
MadGraph5 aMC@NLO

CTEQ School 2014

July 14, 2014

1 Introduction
MadGraph5 aMC@NLO [3] started as the project MadGraph [2] (i.e. Madison Graphs) in 1994 as a joint
collaboration of T. Stelzer and W.F.Long. At that time Tim Stelzer had started coding by hand the
Leading-Order scattering amplitude for a specific process he was studying for his Ph.D. thesis. While
buried in the details of his implementation, he realized that hundreds of people would repeat this tedious
task for many different processes and models and that he would better invest his time in a more radical
solution to these sort of problems; namely the automation of amplitude computations!

The project had a tremendous success, and many people quickly joined the effort to further develop
the project and implement MadEvent [5, 6] to perform the integration; i.e. producing parton-level events
using the amplitudes automatically generated.

More recently, MadGraph was rewritten from scratch in python to become MadGraph5 [7]. Thanks
to the great flexibility of this new structure, MadGraph5 became the host of many modular simulation
tools. Finally, the MadLoop [4], MadFKS [8] and aMC@NLO [9] ventures merged with MadGraph5 to give
MadGraph5 aMC@NLO, bringing together the best of both worlds: flexible automation and accuracy. You
can now forget about all other acronyms since, as you are about to witness by yourself, the MG5 aMC

framework transparently switches upon need from one tool to another.
The MadGraph5 aMC@NLO framework can perform both fixed order and parton shower simulations, but

in the latter case, the parton shower is not implemented directly by MG5 aMC but via an interface to
a third-party program (such as Pythia for example, a code that you will learn about later). In this
tutorial, we will focus on using standalone MG5 aMC in the context of a fixed-order computation.

Finally, NLO corrections are one way of improving the simulation accuracy but, as you may know
by now, merging procedures (i.e. combining simulations of increasing parton-level multiplicities) can be
added on top to even further refine kinematic shapes. MG5 aMC implements several merging techniques,
and in particular at NLO the FxFx [10] approach; we won’t cover that aspect of the framework here, but
you should be aware of this possibility.
MadGraph5 aMC@NLO is installed on the TASI14 virtual machine in /opt/hep, and the interactive in-

terface from which the framework is steered can be launched from anywhere by running the executable
mg5 amc. If you want to get familiar with the tool, you can run an interactive tutorial by typing tutorial

in this interface (you can use tab completion for checking the available tutorials dedicated to specific
uses of MG5 aMC).

Now, let’s dive in and simulate pp→ Hj at fixed order NLO QCD with MadGraph5 aMC@NLO!

1

2 Setting up the physics model
To start the interactive interface steering MG5 aMC , change to the directory tutorials/intro/mg5 amc

and type the command in your terminal (don’t type the ’$’ of course)

$ mg5_aMC

This brings you to an environment very much like your bash terminal; in particular it features history
tracking with the up/down arrow keys, tab completion, and contextual help with the help command.
In what follows, we will differentiate the commands to be typed within the MG5 aMC interface and those
to be executed directly in the bash shell by using the prefixes MG5 aMC> and $ respectively.

To get familiar with this interface, you can try a couple of commands already, such as display

particles, display multiparticles, display interactions, help (or even try out the tutorial, if
you have time).

In this tutorial, we want to study pp → Hj; but if you type display interactions g g h, you
will notice that it is not found! The reason being that the Standard Model loaded when starting the
interface doesn’t have this interaction because it comes through loops only. However, it is possible
to integrate out the top (in the infinite top mass approximation) and build and effective interaction
between the Higgs and two (as well as three) gluons. We refer to this model as the Higgs Effective
Field Theory (HEFT). MG5 aMC puts a strong emphasis on flexibility, especially regarding the type of
physics model supported. Therefore, all the model information is independent of MG5 aMC and stored in
individual standalone python modules following the UFO [1] format. These model modules are folders
placed in /opt/hep/mg5/models and they are formally not part of MG5 aMC. They should be seen as
plugins defined by the user to specify his model of interest. Of course, the MG5 aMC distribution comes
with a variety of predefined models, including the ’heft’ one. However, the version of the HEFT model
we need for this tutorial must have additional information to be able to handle QCD NLO corrections
(such as the UV counterterms for example). In this tutorial, we provide you with this NLO model in
/tutorials/intro/mg5 amc/HEFT, but we left it up to you to place it in the MG5 aMC distribution with
the command

$ tar -xzf ~/tutorials/intro/mg5_amc/HEFT.tar.gz

$ sudo cp -R ~/tutorials/intro/mg5_amc/HEFT /opt/hep/mg5/models/nlo_heft

To execute the command above, you must first exit the MG5 aMC interface with the crtl+d key combi-
nation or by typing exit. Alternatively, you could execute this shell command directly from within the
MG5 aMC interface by preceding it with an exclamation mark.

You are now ready to import this new model, by typing (in the MG5 aMC interface that you should
restart if you have left it)

MG5_aMC> import model nlo_heft-heft

Notice that the suffix -heft is added to the name of the model; this is a name of a restriction card (i.e.
the file restrict heft.dat in the /opt/hep/mg5/models/nlo heft UFO directory) which specifies the
default values for the model parameters that MG5 aMC should assume when loading the model. This
allows for some optimizations by hardcoding assumptions on the model parameters that we will keep
fixed. For example, the heft restriction card specifies that we only consider a diagonal CKM matrix
(irrelevant for the purpose of our process) and massless b quarks. This last point is of importance
because the original model loaded was the SM with massive b-quarks so that the original definition of
the multiparticle labels ’p’ (for ’proton’) and ’j’ (for ’jet’) did not include the b-quark. You must now
correct for this by redefining them so as to include it with

MG5_aMC> define p = p b b~

MG5_aMC> define j = p

(the tilde suffix denotes an antiparticle). We are now ready to generate our process pp → Hj, but just
before we proceed, try to type display particles again, and see if you can find the new name of the
Higgs boson in this model.

2

3 Process generation
The generation of the code happens in two steps. First, by typing

MG5_aMC> generate p p > x0 j [QCD]

MG5 aMC creates an internal representation of the process. The generate syntax used above is mini-
mal, and it can be refined to specify plainly of options (coupling orders, s-channel, forbidden particles,
etc...). Read more on this by typing help generate. The only non trivial part of the command above
is [QCD], which specifies that we want to include both tree-level LO contributions and the real-emission
and virtual NLO ones1. You can see all the Feynman diagrams generated by typing display diagrams

<born/loop/real>, but beware that it will open one pdf file per production channel and diagram cat-
egory. Can you find the diagrams featuring the QCD ghost contribution? Now, you can write out to
disk the process generated. This means that the numerical code for the phase-space integration and the
computations of the required amplitudes will be output to the folder of your choice, from which you will
be able to run your pp→ hj simulation. Type the command

MG5_aMC> output pp_hj

where pp hj is the user-defined name of the folder which is created and contains the numerical code
created. Explore a bit the structure of this pp hj directory, can you see where is located the code for the
various amplitudes? Can you find the subfolders belonging to each production channel? Don’t hesitate
to ask questions about what is what or where is located some part of the simulation you are particularly
keen on exploring. We are now ready to launch the simulation. Now that the process information has
been written out on disk, you could exit the MG5 aMC interface and restart it later to steer the numerical
code previously output.

4 Launching simulations
In order to plot the parton level observables of his choice, the MG5 aMC user must2 code a subrou-
tine that fills histograms for the desired observables, using as input the kinematic configuration and
ME weights generated by MG5 aMC during the Monte-Carlo integration procedure. The template code
pp hj/FixedOrderAnalysis/analysis td template.f is heavily commented and is an excellent basis
for starting the coding of a new analysis. For the purpose of this tutorial, we coded the analysis for plot-
ting the Higgs rapidity and transverse momentum in the fortran file /tutorials/intro/mg5 amc/analysis td pp hj.f

that you should copy to the pp hj/FixedOrderAnalysis folder:

cp ~/tutorials/intro/mg5_amc/analysis_td_pp_hj.f ~/tutorials/intro/mg5_amc/pp_hj/FixedOrderAnalysis/

The simulation can now be initiated and steered by typing

MG5_aMC> launch pp_hj

where pp hj could have been the name of any directory that has been output by MG5 aMC during this
interactive session or a previous one. The following panel should now be presented to you:

The following switches determine which operations are executed:

1 Perturbative order of the calculation: order=NLO

2 Fixed order (no event generation and no MC@[N]LO matching): fixed_order=OFF

3 Shower the generated events: shower=ON

1In a soon to be public version [QCD] can be [QED] (or even [QCD QED]) to include electroweak correction (mixed
QCD/QED/EW corrections respectively). Also by using the [virt=QCD] syntax instead, MG5 aMC generates the code
for the loop Matrix Element (ME) only (using MadLoop standalone) without the code for the real-emission and the
integration routines. This useful for using the MG5 aMC loop ME with another external Monte Carlo tool. Ask me for
more details if your are interested.

2For NLO predictions matched to parton showers, one can write out unweighted events which can be reprocessed later
by any third-party tool (such as root, MadAnalysis5, rivet, etc...) to plot any observable. This is not a possibility
for NLO fixed-order run, ask us why!

3

4 Decay particles with the MadSpin module: madspin=OFF

Either type the switch number (1 to 4) to change its default setting,

or set any switch explicitly (e.g. type ’order=LO’ at the prompt)

Type ’0’, ’auto’, ’done’ or just press enter when you are done.

[0, 1, 2, 3, 4, auto, done, order=LO, order=NLO, ...][60s to answer]

Since we are interested in a fixed order simulation, you can type 2 and see the switch fixed order

turning to ’ON’. Notice that the switch ’shower’ automatically turned off, do you understand why? We
will start by producing the LO distributions so type 1 to switch to LO and then proceed to the next step
by typing 0 or the key. The next panel allows you to specify all the simulation parameters:

Do you want to edit a card (press enter to bypass editing)?

1 / param : param_card.dat

2 / run : run_card.dat

3 / FO_analyse : FO_analyse_card.dat

you can also

- enter the path to a valid card or banner.

- use the ’set’ command to modify a parameter directly.

The set option works only for param_card and run_card.

Type ’help set’ for more information on this command.

- call an external program (ASperGE/MadWidth/...).

Type ’help’ for the list of available command

[0, done, 1, param, 2, run, 3, FO_analyse, enter path][60s to answer]

You can have a look at the param card.dat by typing 1; this is where the physical values of the model
parameters can be set and you can leave all parameters there unchanged. The run card.dat, opened by
typing 2, specifies the generation-level cuts and general settings of the run. For this tutorial, you should
modify the following parameters:

• req acc FO : This is the desired relative MC accuracy for the inclusive cross-section. To make sure
that your simulation goes through sufficiently quickly, set this parameter to something between
0.01 and 0.03.

• ebeam1 and ebeam2 : We want to study 8 TeV collisions, so set both these values to 4000.

• pdlabel : To use the PDF sets from the lhapdf interface and not the internal MG5 aMC ones, set
this parameter to ’lhapdf’.

• lhaid : Let’s use the NLO CT10 PDF sets, whose id is 11000 (c.f. /opt/hep/share/lhapdf/PDFsets.index).
Set 11000 here then.

• fixed ren scale, fixed fac scale, fixed QES scale : Fixed scales are perfectly fine for the
process at hand here. So set T for all three of these entries.

• muR ref fixed, muF1 ref fixed, muF2 ref fixed, QES ref fixed : We shall use the unique scale
µ = mH here, so set all these to 125.0

• reweight scale, reweight PDF: MG5 aMC has the option of automatically computing the scale and
PDF variations (i.e. uncertainties) via reweighing techniques [11] (i.e. no need any longer for
rerunning the entire simulation from scratch with different scales or PDF sets). No reason not to
benefit from that, so set both entries to .true..

• PDF set min, PDF set max: These are the min and max error set ID for the PDF considered. In
our case we use CT10, and these should be 11001 and 11052 respectively.

The other parameters can keep their default values, but have a look at them, especially the generation
level cuts. Do you understand them all? Why don’t we find here some of the cuts that we are used to
have in LO Monte-Carlos, for example the minimum deltaR between a photon and a jet?

4

Finally, in the FO analyse card.dat card, we must instruct MG5 aMC to use the analysis written in
analysis td pp hj.f (see beginning of this section) by setting the parameter FO ANALYSE to analy-
sis td pp hj.o.

We are all set, and you can now press the enter key to start the simulation. Pay attention to what
MG5 aMC writes out on the screen, and ask us about what you don’t understand. For example, what
does mean the ”Poles successfully cancel for 20 points over 20 (tolerance=1.0e-05)” print-
out that you will see during the NLO run? You can also follow the progression of the run (although in a
less detailed way) from the local webpage which should have opened automatically at the beginning of
the run.

Once MG5 aMC displays the summary information of the run, the simulation is over. Before continuing,
let’s take detour and present an alternative way of steering MG5 aMC simulations; type the following
command

MG5_aMC> launch -i pp_hj

Notice that the prompt changed to pp hj>. This is because your interface is now bound to the pp hj

process output and the available commands (that you can list by typing ’help’) are now different and
all related to a type of simulation you can launch for this specific process output. We refer to this bound
interface as the run interface, as opposed to the master interface which is the one that you can start
at any time using the shell command mg5 aMC. The run interface of pp hj can be accessed either by
typing launch -i pp hj from within the master interface (as we just did), or by running the executable
pp hj/bin/aMCatNLO. Finally you can exit the run interface (and return to the master one) at any time
using the key combination crtl+d or by typing exit.

We must now re-perform this simulation, but this time including NLO QCD corrections. For this,
simply type

pp_hj> launch NLO -f

from the pp hj run interface. The ’-f’ argument bypasses the possible modifications of the cards and
directly launches the simulation using the setup last used. Once this NLO run finishes you should be able
to infer from the two summaries of the LO and NLO simulations what is the K-factor for that process;
does its value surprise you?

5 Plotting the Higgs rapidity and transverse momentum
The entries of the histograms for the observables y(H) and pT (H) we want to plot are stored in the
file MADatNLO.top placed in the pp hj/Events/run <n>[LO] directories where n numbers your simu-
lations and the suffix ’ LO’ stresses which one was LO only. Copy these files to the mg5 amc directory
(while renaming the MADatNLO.top file for the LO simulation to MADatLO.top) , by typing (from within
/tutorials/intro/mg5 amc/)

$ cp pp_hj/Events/run_01_LO/MADatNLO.top MADatLO.top

$ cp pp_hj/Events/run_02/MADatNLO.top .

You can now simply execute the script

$./makeplots.py

that uses gnuplot and the plotting card plotter.gnuplot to create the pdf file plot.pdf which should
automatically open. If you have already been through the sherpa tutorial at this stage, you should see
the matched and merged sherpa predictions superimposed in black.

We are now back to physics and many questions should arise:

• What is the ”kink” around pT (H) = 10GeV which seems to affect MG5 aMC results?

• Why is the scale dependence flat before this kink, and acquires some shape only after it?

• Why does the LO prediction not cover the phase-space region before the kink?

5

• Why is there a bin up immediately followed by a bin down in the kink region?

• Why is the pT spectrum of fixed order NLO prediction softer than the matched ones for pT < 10GeV

• Why does it look like NLO corrections have more impact on the shape of the pT distribution in
the case of fixed order simulations than in the case of matched ones?

• Why does the shape of the Higgs rapidity distribution looks more similar across the four types of
prediction?

As you can see, the MC accuracy error bars are bigger in the regions of the phase-space contributing
less. What could one do to improve the resolution in those regions, other than simply waiting longer
after have increased req acc?

6 Playing with the setup
If you still have time, try changing some parameters of the simulation and assessing their impact on the
plots created in the previous section. Here are a couple of ideas:

• How much do things change when switching the default dynamic scale?

• When using a PDF set from a different group, does it fall within the error band computed using
the CT 10 error set?

• How does the agreement with matched predictions change as you change the minimum jet pT ?

And finally, you can play around with MG5 aMC and try to generate a couple of different processes,
using the various tweaks of the generate syntax, and seeing what are the diagrams generated.

References
[1] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, “UFO - The Universal

FeynRules Output,” Comput. Phys. Commun. 183, 1201 (2012) [arXiv:1108.2040 [hep-ph]].

[2] T. Stelzer and W. F. Long, “Automatic generation of tree level helicity amplitudes,” Comput. Phys.
Commun. 81, 357 (1994) [hep-ph/9401258].

[3] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. -S. Shao and T. Stelzer
et al., “The automated computation of tree-level and next-to-leading order differential cross sections,
and their matching to parton shower simulations,” arXiv:1405.0301 [hep-ph].

[4] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni and R. Pittau, “Automation of
one-loop QCD corrections,” JHEP 1105, 044 (2011) [arXiv:1103.0621 [hep-ph]].

[5] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph,” JHEP 0302,
027 (2003) [hep-ph/0208156].

[6] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn and D. L. Rain-
water et al., “MadGraph/MadEvent v4: The New Web Generation,” JHEP 0709, 028 (2007)
[arXiv:0706.2334 [hep-ph]].

[7] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, “MadGraph 5 : Going Beyond,”
JHEP 1106, 128 (2011) [arXiv:1106.0522 [hep-ph]].

[8] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, “Automation of next-to-leading order computa-
tions in QCD: The FKS subtraction,” JHEP 0910, 003 (2009) [arXiv:0908.4272 [hep-ph]].

[9] S. Frixione, F. Stoeckli, P. Torrielli, B. R. Webber and C. D. White, “The MCaNLO 4.0 Event
Generator,” arXiv:1010.0819 [hep-ph].

6

[10] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO,” JHEP 1212, 061 (2012)
[arXiv:1209.6215 [hep-ph]].

[11] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, “Four-lepton production
at hadron colliders: aMC@NLO predictions with theoretical uncertainties,” JHEP 1202, 099 (2012)
[arXiv:1110.4738 [hep-ph]].

7

For tutorials
at Summer Schools

PYTHIA 8 Merging Tutorial

Torbjörn Sjöstrand
Department of Theoretical Physics, Lund University

Stefan Prestel
Theory group, DESY

1 Introduction

The objective of this exercise is to teach you the basics of how to use the Pythia 8.1 event
generator to study multi-jet backgrounds. As you become more familiar you will better
understand the tools at your disposal, and can develop your own style to use them. Within
this first exercise it is not possible to describe the physics models used in the program;
for this we refer to the Pythia 8.1 brief introduction [1], to the full Pythia 6.4 physics
description [2] (and all the further references found in them), and [5, 6, 7] concerning
matrix element merging.

Pythia 8 is, by today’s standards, a small package. As such, it should be noted that
Pythia8 includes a selection 2 → 1 and 2 → 2 processes, as well as a limited variety of
2→ 3 processes, but does not contain a general matrix element generator. New processes,
particularly for two or more additional jets, can be made available in form of Les Houches
Event (LHE) files. This means that to estimate backgrounds with many jets, you can use
a matrix element generator like e.g. Madgraph/Madevent to improve the Pythia8
description of well-separated jets.

2 Getting started: Installing Pythia 8

If you would like to install Pythia 8 on your private machine, and you have a C++
compiler, here is how to install the latest Pythia 8 version on a Linux/Unix/MacOSX
system as a standalone package.

For this tutorial, most installation steps have already been taken. You can find the
Pythia 8 source code under

PYTHIADIR=/opt/hep/share/Pythia8

1

on your virtual machine. Pythia 8 has been installed so that you can directly change
into one of the tutorial dirctories

INTRODIR=~/tutorials/intro/pythia

HIGGSDIR=~/tutorials/higgs/pythia

BOOSTDIR=~/tutorials/boost/pythia

and start directly with Step 6 below. Alternatively, the following steps allow you to install
Pythia 8 from the source code.

While Pythia can be run standalone, it can also be interfaced with a set of other libraries.
One example is HepMC, which is the standard format used by experimentalists to store
generated events. Since the the location of external libraries is naturally installation-
dependent, it is not possible to give a fool-proof linking procedure, but some hints are
given below.

1. In a browser, go to

http://www.thep.lu.se/∼torbjorn/Pythia.html

2. Download the (current) program package

pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type

tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all the Pythia 8 source files
are now ready and unpacked. From now on, we will call this directory1 PYTHIADIR.

4. Move to this directory (cd $PYTHIADIR). If you are only interested in directly pro-
ducing plots from Pythia event records, you can directly go to the next step. If
you want to produce and store HepMC event output, configure the program in
preparation for the compilation by typing

./configure --with-hepmc=$HEPMC_PATH

where the directory-tree $HEPMC PATH would depend on your local HepMC instal-
lation. Should configure not recognise the version number you can supply that
with an optional argument, like

./configure --with-hepmc=$HEPMC_PATH--with-hepmcversion=2.06.06

For this tutorial, we will use a trick to keep the size of inputs small: We will allow
Pythia to read compressed Les Houches event files. For this, configure Pythia
with the options

1On your virtual machine, you can find the Pythia 8 source files under /opt/hep/share/Pythia8.

2

./configure --enable-gzip --with-boost=$BOOST_PATH \

--with-zlib=$ZLIB_PATH --with-hepmc=$HEPMC_PATH \

--with-hepmcversion=2.06.06

in order to link to the gzip and boost libraries. For this school, you can use

BOOST_PATH=/usr

ZLIB_PATH=/usr/lib/i386-linux-gnu

HEPMC_PATH=/opt-hep

5. Do a make. This will take 2–3 minutes (computer-dependent). The Pythia 8
libraries are now compiled and ready for physics.

6. For test runs, cd to the examples/ subdirectory, or one of the tutorial directories.
An ls reveals a list of programs, mainNN, with NN from 01 through 90. These
example programs each illustrate an aspect of Pythia 8. For a list of what they
do, see the README file in the same directory or look at the online documentation.
Initially only compile one or two of them to check that the installation works. Once
you have worked your way though the introductory exercises in the next sections
you can return and study the programs and their output in more detail.
If you want to produce HepMC output when installing Pythia 8 for the source
code, do either of

source config.csh

source config.sh

the former when you use the csh or tcsh shells, otherwise the latter. (Use echo

$SHELL if uncertain.). If you are not interested in HepMC, this step can be skipped.
To execute one of the test programs, do

make mainNN

./mainNN.exe

The output is now just written to the terminal, stdout. To save the output to a
file instead, do ./mainNN.exe > mainNN.out, after which you can study the test
output at leisure by opening mainNN.out. See Appendix A for an explanation of
the event record that is listed in several of the runs.

7. If you open the file

$PYTHIADIR/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and param-
eters are described. Use the left-column index to navigate among the topics, which
are then displayed in the larger right-hand field.

To produce a matrix-element improved prediction with Pythia 8, you will also need to
supply Les Houches Event (LHE) files as input. You will have to generate these yourself,
with your own cuts, and your preferred matrix element generator. For the sake of this
introductory tutorial, we supplied sample LHE files under

3

INTRODIR=~/tutorials/intro/pythia

You can use these as input for the programs you will develop in this tutorial. The names
of the files reflect the process and the generation settings2

ggh cc tree 0.lhe.gz: pp→ H (leading order, µf = mH, µr = mH)
ggh ll tree 0.lhe.gz: pp→ H (leading order, µf = 1

2
mH, µr = 1

2
mH)

ggh cc tree 1.lhe.gz: pp→ H + 1 parton (leading order, µf = mH, µr = mH)
ggh hh tree 1.lhe.gz: pp→ H + 1 parton (leading order, µf = 2mH, µr = 2mH)
. . .

These files come with no guarantees and should only be used for this tutorial. for the
first part of the tutorial, you can stick to the input events generated with µf = mH and
µr = mH, i.e. the ”ggh cc”-files.

3 Pythia 8 standalone

When using Pythia, you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the code,
to illustrate common tasks and help getting started. You will also see how the parameters
of a run can be read in from a file, so that the main program can be kept fixed. Many of
the provided main programs therefore allow you to create executables that can be used
for different physics studies without recompilation, but potentially at the cost of some
flexibility.

3.1 Simple LHC Events

The focus of the next sessions will be on extracting signals from Standard Model back-
grounds. So, to get to know the Pythia 8 syntax, we will generate one pp → H + jets
event at the LHC, using Pythia standalone to produce all jets.

Open a new file mymain.cc in the INTRODIR subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here with explanatory comments added)3:

// Headers and Namespaces.

#include "Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

// Declare Pythia object

Pythia pythia;

2The usage of the different input files will be explained in the text.
3Experienced Pythia 8 users might be surprised by the initialisation on a Les Houches reader object.

Using this slightly more complicated initialisation, gzip-compressed files will become readable.

4

// Declare Les Houches event file reader.

LHAupLHEF lhareader("./ggh_cc_tree_0.lhe.gz");

// Initialise pythia on LHE file for qqbar-> W

pythia.init(&lhareader);

// Generate event(s).

// Generate an(other) event. Fill event record.

pythia.next();

// End main program with error-free return.

return 0;

}

Next you need to edit the Makefile (the one in the INTRODIR subdirectory) so it knows
what to do with mymain.cc. The line

Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

together with the following three lines enumerate the main programs that do not need
any external libraries. Edit the last of these lines to include also mymain:

main40 mymain: \

Now you can compile and run your main program by typing

make mymain

./mymain.exe > mymain.out

You can then study mymain.out, especially the example of an event record. At this point
you need to turn to Appendix A for a brief overview of the information stored in the event
record.

An important part of the event record is that many copies of the same particle may
exist, but only those with a positive status code are still present in the final state. For
illustration, consider a gluon produced in the first initial state splitting of the gg → H
hard interaction. Initially, this parton will have a positive status code. When a shower
branching changes properties of this gluon, then the new, changed gluon is added at the
bottom of the then-current event record, but the old g is not removed. It is marked as
decayed, however, by negating its status code. At any stage of the shower there is thus
only one “current” copy of this gluon. When you understand the basic principles, see if
you can find several copies of the a parton produced in the hard interaction, and check
the status codes to figure out why each new copy has been added. Also note how the
mother/daughter indices tie together the various copies.

3.2 A first realistic analysis

We will now gradually expand the skeleton mymain program from above, towards what
would be needed for a more realistic analysis setup.

5

• Generally, we wish to generate more than one event. To do this, introduce a loop
around pythia.next() and pythia.event.list(), so the code now reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

pythia.event.list();

}
Hereafter, we will call this the event loop. The program will now generate and
print 5 events; each call to pythia.next() resets the event record and fills it with a
new event. Once you start generating many events, it might be convenient to remove
the pythia.event.list() call. By default, Pythia 8 will still print a record of
the very first event.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add

pythia.stat();

just before the end of the program.

• During the run you may receive problem messages. These come in three kinds:

– a warning is a minor problem that is automatically fixed by the program, at
least approximately;

– an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

– an abort is such a major problem that the current event could not be completed;
in such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation,
a problem message is printed only the first time it occurs. The above-mentioned
pythia.stat() will then tell you how many times each problem was encountered
over the entire run.

• Looking at the pythia.event.list() listing for a few events at the beginning
of each run is useful to make sure you are generating the right kind of events, at
the right energies, etc. For real analyses, however, you need automated access to
the event record. The Pythia event record provides many utilities to make this
as simple and efficient as possible. To access all the particles in the event record,
insert the following loop after pythia.next() (but fully enclosed by the event
loop)

for (int i = 0; i < pythia.event.size(); ++i)

cout << "i = " << i << ", id = " << pythia.event[i].id() <<

endl;

which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the
PDG identity code of a particle (see Appendix A). The cout statement, therefore,

6

will give a list of the PDG code of every particle in the event record. All methods
that give particle properties can be found following the “Particle properties” link
in the section “Study output” in the left-hand menu in the manual, or in the file
/path/to//Pythia/pythia8160/htmldoc/ParticleProperties.html.

• If you are e.g. only interested in final state partons, the isFinal() and isParton()

methods can be applied to the event record entry:

for (int i = 0; i < pythia.event.size(); ++i)

if(pythia.event[i].isFinal() && pythia.event[i].isParton())

cout << "i = " << i << ", id = " <<

pythia.event[i].id() << endl;

This will only print the PDG code of final state gluons, (anti)quarks and diquarks.

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum
(pythia.event[i].pT()). Use this method to find the transverse momentum of
the H-boson after the evolution, i.e. the last H-boson in the event record (which
is of course cheating a bit, since in an experimental environment, it is a lot more
complicated to isolate H-candidates).

• We now want to generate more events, say 1000, to study the shape the pT,H-
spectrum. Inside Pythia is a very simple histogramming class, that can be used
for rapid check/debug purposes. To book the histograms, insert before the event
loop

Hist HistPTH("pT of H-boson", 50, 0., 500.);

where the last three arguments are the number of bins, the lower edge and the
upper edge of the histogram, respectively. As an exercise, fill this histogram for
each event with the transverse momentum of the H-boson after the evolution.
For this, initialise a variable before the particle loop, and find the pT inside a
particle loop:

double pT = 0.;

for (int i = pythia.event.size(); i > 0; --i)

if(pythia.event[i].idAbs() == 25) {
pT = pythia.event[i].pT();

break;

}

Then, before the end of the event loop, insert

HistPTH.fill(pT);

to fill the histogram. To arrive at a correctly normalised histogram, include

HistPTH *= pythia.info.sigmaGen() / pythia.info.nAccepted();

after the event loop and the pythia.stat() call. In this way, the sum of the
heights of all histogram bins will give the correct cross section, irrespectively of

7

how many events you requested4. Finally, to print the histograms to the terminal,
add a line like

cout << HistPTH;

For comparison with merged results, it might be useful to save the output of this
run.

4 Tree-level merged predictions

The main program we have constructed in the previous section has one drawback: All
radiation will be produced by Pythia 8. This will give reliable results for soft and
collinear configurations, but less so for multiple hard, well-separated jets. To model both
soft/collinear and well-separated jets at the same time, we need to include matrix element
calculations – which describe the production of multiple hard jets nicely – into the jet
evolution of the parton shower. This can be done by supplying LHE files to Pythia 8,
which will then internally be processed to perform a smooth transition from n-jet to n+1-
jet events. Several main programs illustrating matrix element + parton shower merging
(MEPS) are included in the Pythia 8 distribution, offering a range of different merging
schemes:

• Tree-level merging: MLM-style jet matching with Madgraph or Alpgen, CKKW-
L merging [5], and unitarised ME+PS merging (UMEPS) [6];

• Next-to-leading order merging: NL3 merging, unitarised NLO+PS merging (UN-
LOPS) [7].

Here, we will get to know the CKKW-L, UMEPS and UNLOPS schemes by manipulating
some example main programs5 We will use H+ ≤ 2 jets as an example.

4.1 CKKW-L merging

CKKW-L merging [5] was the first merging scheme available in Pythia 8. For this school,
we supply the example main program main-ckkwl.cc. This program uses the LH files
in the examples directory to produce a result that simltaneously describes H + 0, 1, 2 jet
observables with leading-order matrix elements, while also including PS resummation (i.e.
arbitrarily many PS emissions). CKKW-L is described in the online manual under Link
to other programs → CKKW-L merging.

Take as an example one-jet observables (e.g. the transverse momentum of the jet in events
with exactly one jet). In this case, we want to take a ”hard” jet from the pp→ Hj matrix
element (ME), while ”soft” jets should be modelled by emissions off pp → H states,
generated by Pythia. This means that in order to smoothly merge these two samples,

4Pythia cross sections are given in units of mb. If you instead prefer e.g. pb then multiply by 1e9.
5A more concise tutorial on how to write a CKKW-L main program from scratch can be found at

http://home.thep.lu.se/∼torbjorn/pythia8/mergingworksheet8160.pdf .

8

we have to know in which measure ”hard” is defined, and which value of this measure
separates the hard and soft regions. In main-ckkwl.cc, these definitions are

pythia.readString("Merging:doPTLundMerging = on");

pythia.readString("Merging:TMS = 15");

This will enable the merging procedure, with the merging scale defined through the evo-
lution p⊥ of Pythia 8. Such a definition fixes what we mean when we talk about “hard”
and “soft” jets6:

Hard jets: min{p⊥evol(Hard jet)} > tMS

Soft jets: min{p⊥evol(Soft jet)} < tMS

Then, to define that we want to produce results for Higgs production, we set

pythia.readString("Merging:Process = pp>h");

and allow for full flexibility in the the Higgs decay products, by simply disregarding the
decay products in the merging:

pythia.readString("Merging:mayRemoveDecayProducts = on");

Finally, we want to include the pre-generated ME events for up to two additional jets.
This is communicated to Pythia by setting

pythia.readString("Merging:nJetMax = 2");

Then, main-ckkwl.cc will start generating events, reading from the LHE file with the
highest parton multiplicity first. Each event after the merging comes with a weight

double weight = pythia.info.mergingWeight();

which contains Sudakov factors to remove the double counting between samples of different
multiplicity, αs-ratios to incorporate αs−running, and ratios of parton distributions to
include variable factoriation scales. This weight must be used to fill histogram bins. As
an exercise, convince yourself that the variation in this weight is moderate.

main-ckkwl.cc finishes by normalising the histograms for each sub-sample by the correct
cross section

SubHistPTH *= 1e9 * pythia.info.sigmaGen() / pythia.info.nAccepted();

and then adding the histograms

HistPTH += SubHistPTH;

6There is of course a plethora of possilbe hardness criteria. For this reason, CKKW-L merging in
Pythia 8 allows you to define your very own merging scale (please consult the manual for details).

9

You can compile and main-ckkwl.cc by issuing the commands

make main-ckkwl

./main-ckkwl.exe

Now that we understand the main program, let us (a) compare to the full result of
simply showering the Higgs production process, (b) check in which p⊥ regions which jet
multiplicity contributes, (c) vary the merging scale value TMS.

If you would like to get your hands dirty on some CKKW-L details, check out the col-
lection of main programs for CKKW-L merging (main81.cc-main85.cc) that Pythia 8
offers. Each of these require a different level of knowledge about the merging procedure.
main85.cc is intended as a black box. However, before you get stuck on CKKW-L, it is
useful to know that other, more modern, merging schemes are available in Pythia 8.

4.2 Unitarised ME+PS merging

One main disadvantage of classical merging schemes is the matrix element calculations
that are included into the parton shower might contain large logarithmic contributions
that cannot be cancelled by the shower resummation. These terms can, particularly for
small merging scales, lead to changes of the inclusive cross section after multi-jet merging.
A better shower would ameliorate this issues. Still, such problems reveal that the merging
scale value is not a purely technical parameter, but should be chosen in a sensible range.

However, it is possible to demote the merging scale to a technical parameter without
having to improve the PS resummation. Rather, improved approximate virtual corrections
can be employed, resulting in a scheme called unitarised ME+PS merging, short UMEPS
[6]. The basic idea is simple: Subtract what you add, then the inclusive cross section
will stay fixed. The way this ”add-subtract” scheme is facilitated (without disturbing the
description of well-separated jets) closely follows the prescription how (un-merged) parton
showers preserve the inclusive cross section. UMEPS is described in the online manual
under Link to other programs → UMEPS merging.

For this school, we supply a sample main program7 for UMEPS merging, main-umeps.cc.
The main program starts by setting the merging scale value

pythia.readString("Merging:TMS = 15");

Note that the actual merging scale definition will be set on a sample-by-sample basis.
Then, the core scattering is defined

pythia.readString("Merging:Process = pp>h");

pythia.readString("Merging:mayRemoveDecayProducts = on");

and the maximal number of additional partons in the matrix element calculation is set

7The standard UMEPS sample main program is main86.cc.

10

pythia.readString("Merging:nJetMax = 2");

The event generation code starts after these settings. Note that this code is split into
an ”additive” part (the loop over njetcounterLO), followed by a ”subtractive” part (the
loop over njetcounterCT).

In the additive part of UMEPS, the merging scale is defined by

pythia.readString("Merging:doUMEPSTree = on");

This is currently the only merging scale definition for UMEPS, and corresponds to sepa-
rating hard and soft jets according to min{p⊥evol}. The setting

pythia.readString("Merging:nRecluster = 0");

is also necessary to ensure that the algorithm works as expected (see below). Histograms
bins for observables in this additive part should, as in CKKW-L, be filled with the weight
containing Sudakov-, αs and PDf-factors,

double weight = pythia.info.mergingWeight();

and the resulting sub-sample histogram should added to the to-be merged histogram.

In the subtractive part of UMEPS, we define the merging scale by

pythia.readString("Merging:doUMEPSSubt = on");

pythia.readString("Merging:nRecluster = 1");

This enables the trick that is at the very heat of UMEPS: In a parton shower, ap-
proximate virtual corrections Vps and approximate real emissions Rps cancel because
Vps = −

∫
Rps. Thus, the inclusive cross section is not changed by the parton shower.

This cancellation is however spoiled when merging a real emission matrix element Rme,
since Rme 6= Rps. The subtractive part of UMEPS puts Vumeps = −

∫
Rme, thus explicitly

enforcing the parton-shower-like cancellation. The necessary integration is enabled by
putting Merging:nRecluster = 1. As always, the result should be histogrammed with
the weight

double weight = pythia.info.mergingWeight();

Now, the resulting sub-sample histograms should be subtracted from the to-be merged
result.

You can compile and main-umeps.cc by issuing the commands

make main-umeps

./main-umeps.exe

11

Once we have understood main-umeps.cc, let us find the average weight (for one particu-
lar number of additional ME partons) of the additive parts of UMEPS, and compare this
to the average weight (of the same parton multiplicity) in CKKW-L. Further, change the
merging scale value in UMEPS, and try to understand the changes. Compare the merged
results between CKKW-L and UMEPS.

If you have finished these challenges, you should take the opportunity to try a few other
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.

In the next session, you will move one step further in the history of merging schemes.
To assess the theoretical uncertainties of current merging methods, you will use the best
method we have so far in Pythia 8: NLO multi-jet merging in the UNLOPS scheme.

5 Next-to-leading order merging

The most recent development in combining fixed-order calculations and parton shower
resummation is next-to-leading order merging. This is different from NLO matching (e.g.
POWHEG and MC@NLO) because it allows to describe different parton multiplicities
simultaneously at NLO accuracy. NLO merging schemes are the successor of tree-level
merging schemes.

In this tutorial, we will assess the uncertainties of the unitarised NLO+PS merging method
(UNLOPS, [7]). For this, we will depart from our usual practise of simply printing his-
tograms to the terminal. Instead, we will use a sample main program that uses HepMC
output, which can then be analysed with RIVET. We will briefly describe the main pro-
gram used for this study, and come back to the actual uncertainty estimates below.

5.1 main88.cc

UNLOPS merging is the direct extention of UMEPS to NLO accuracy. For this school,
we would like our simulation to describe H + 0 and H + 1 jet simultaneously with NLO
accuracy, describe H + 2 jets with tree-level accuracy, and take all further jets from the
PS approximation. This means we have to consider two types of input calculations:
Tree-level and NLO inputs. For this school, we supply tree-level event samples produced
with MadGraph, and NLO event samples produced with POWHEG-BOX. UNLOPS then
processes these samples in the following way:

(1) Use tree-level matrix elements for n partons as ”seeds” for higher-order corrections
(of O (αn+2

s) and beyond), making sure that no O (αn+1
s) are produced.

(2) Add the NLO samples, making sure that no higher orders (of O (αn+2
s) and beyond)

are produced.

(3) Unitarise everything, making sure that no unwanted O (αn+1
s) terms are produced,

i.e. ensure that the inclusive cross section is given by the H + 0 NLO result.

12

This is done internally in main88.cc, the sample main program we will use to generate
NLO merged results. In the event generation phase, main88.cc uses the tree-level input
file twice (once for Step (1) and once for Step (3)), as well as using the NLO (POWHEG)
inputs twice (once for Step (2) and once for Step (3)). main88.cc is described in detail
in the online manual under Link to other programs → NLO merging8.

main88.cc reads a settings file (e.g. main88.cmnd) for the necessary settings. It is
important to set the switches

// Definition core process for merging

Merging:Process = ?

Merging:mayRemoveDecayProducts = ?

// Maximal number of additional LO jets.

Merging:nJetMax = ?

// Maximal number of additional NLO jets.

Merging:nJetMaxNLO = ?

// Merging scale value.

Merging:TMS = ?

// Values of (fixed) scales in the matrix element calculation.

Merging:muFacInME = ?

Merging:muRenInME = ?

// Values of (fixed) scales for the PS lowest multiplicity process.

Merging:muFac = ?

Merging:muRen = ?

in such an input file. The process definition, maximal number of additional tree-level
jets and merging scale value have already been discussed in the CKKW-L section. In
addition, you now need to set the maximal number of additional jets for which an NLO
event sample is available, and the renormalisation and factorisation scales with which the
event samples have been produced. Finally, it is also necessary to set te scales which
would be used in default Pythia 8 to evaluate the core scattering (i.e. for H production,
the mass mH). In the case of wimpy showers, the value of Merging:muFac further sets
the shower starting scale in UNLOPS.

In general, you also need to generate tree-level- and POWHEG event samples as input
for main88.cc. For this school, we have included some pre-calculated samples in the
HIGGSDIR directory. The main program main88.cc assumes, to allow for a streamlined
file parsing, a particular naming convention. All POWHEG event samples should be
called

myLHEF_powheg_njets.lhe.gz

where myLHEF is a free process idetifier, which is assumed to be identical for all samples
belonging to one particular process. njets should give the number of additional partons
that are described at NLO accuracy (i.e. not counting real-emission partons). POWHEG

8In fact, we have slightly changed main88.cc to be able to read compressed LHE files.

13

events for H + j@NLO could for example be called higgs powheg 1.lhe.gz. Tree-level
inputs are called

myLHEF_tree_njets.lhe.gz

A legitimate name for a tree-level sample with two additional jets could e.g. be
higgs tree 2.lhe.gz.

To use main88.cc, go into the HIGGSDIR directory and compile the main program

cd $HIGGSDIR

make main88

and run by issuing a command of the form

./main88.exe myInputFile myLHEF myHEPMCoutput

main88.cc will then, consecutively, read tree-level and POWHEG event samples, and
produce HepMC events.

To get used to the program, produce only small number of events, and run

./main88.exe main88.cmnd ggh_cc myHEPMCoutput

Can you identify the Steps (1)-(3) through the terminal output? Why is step (3) applied
both to tree-level and POWHEG samples?

5.2 Uncertainty estimates

In this part, we will try to estimate the scale uncertainty of the UNLOPS method. For
this, we will vary µf and µr in the matrix element calculation, while keeping the scales
in the parton shower resummation unchanged. In the HIGGSDIR directory, you can find
event files produced with three different scale settings:

• Files whose name contains ll have been generated with µf = µr = 1
2
mH

• Files whose name contains cc have been generated with µf = µr = mH

• Files whose name contains hh have been generated with µf = µr = 2mH

Let us now investigate the scale uncertainty of the (H+0, 1@NLO)+(H+2@LO) prediction.
We will use the analysis MC HJETS of RIVET to do this.

For each (fixed-order) scale setting, you will need to change Merging:muFacInME and
Merging:muRenInME in your input file and use the correct LHE samples.

We use HepMC events to parse the Pythia 8 output to RIVET. However, HepMC
event files quickly become prohibitively large. This is why RIVET allows the usage

14

of fifo pipes to pass the events at generator run time, without having to store large
intermediate files. Pythia 8 will write a single event to the pipe, and RIVET will read
and analyse this event. To make this as simple as possible, you can use the BASH script
run.sh. This script allows to run both Pythia 8 and RIVET in the background of one
common terminal. To use run.sh, make it executable

chmod +x run.sh

and infer it by

./run.sh

main88.cc needs to be compiled before running the script. You will have to change the
name of LHE files, log-files and aida output files in the script, and the scales in the
settings file, if you want to generate histograms with different scale choices.

Now, try to do the following

• Run main88.cc, for the central scales, with only (H + 0@NLO)+(H + 1, 2@LO),
and with H + 0, 1@NLO)+(H + 2@LO). Check the exclusive jet multiplicity of the
MC HJETS analysis. Can you explain the differences?

• Run main88.cc, with H + 0, 1@NLO)+(H + 2@LO) for the three scale choices

(a) µf = µr = 1
2
mH = 62.5 GeV

(b) µf = µr = mH = 125 GeV

(c) µf = µr = 2mH = 250 GeV

Display the results together, and try to understand the differences.

• Switch between wimpy and power showers by changing the settings
TimeShower:pTmaxMatch and SpaceShower:pTmaxMatch.

Finally, compare the UNLOPS results to the results of the other Event Generators. This
is most conveniently done if you display the variations as uncertainty band. You can
modify the script

~/tutorials/higgs/plotit.sh

for this purpose. Type

cd ~/tutorials/higgs/

./plotit.sh -help

to find out about the script.

This concludes the generator-specific part of the tutorials. Don’t hesitate to contact us
[8] if you have further questions.

15

Bonus: Some interesting settings

You are now free to play with further options in the input file (or use the
pythia.readString method directly in your code), and make changes such as:

• Tune:pp = 5 (or other values between 1 and 7)
Different combined tunes, in particular to radiation and multiple interactions pa-
rameters. In part this reflects that no generator is perfect, and also not all data
is perfect, so different emphasis will result in different optima. Currently, the de-
fault tune for LHC is Tune 4C, (which can also be explicityly set by Tune:pp = 5).
What happens if you switch to Tune A2, which is a recent tune that can be used
by putting Tune:pp = 7?

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MPI = off

switch off multiple interactions.

• TimeShower:pTmaxMatch = 1

wimpy final state showers (default).

• SpaceShower:pTmaxMatch = 1

wimpy initial state showers (non-default).

For debugging your code for instance, it might be reasonable to switch off multiple inter-
actions, so that you can produce plots more quickly.

The philosophy of Pythia is to make every parameter available to the user. A com-
plete list of changeable settings can be found in the online manual. Have a look at the
switches related to MEPS merging. As additional challenge, think about which switches
are dangerous, i.e. will maximally corrupt your predictions. Can you isolate a singularly
bad setting? Why does the prediction deteriorate with the changes?

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:

16

• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id());

• name, a plain text rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

A.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [3].
An online listing is available from

http://pdg.lbl.gov/2008/mcdata/mc particle id contents.html

A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.

17

A.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows:

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiple interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

A.3 History of parton shower branchings

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing
to the same particle, which in its turn has both mother pointers referring back to the
original. Another special case is the description of ISR by backwards evolution, where the
mother is constructed at a later stage than the daughter, and therefore appears below in
the event listing.

If you get confused by the different special-case storage options, the two
pythia.event.motherList(i) and pythia.event.daughterList(i) methods are able
to return a vector of all mother or daughter indices of particle i.

A.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [4]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new

18

separate colour. These colours are given consecutive labels: 101, 102, 103, A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.

References

[1] T. Sjöstrand, S. Mrenna and P. Skands, Comput. Phys. Comm. 178 (2008) 852
[arXiv:0710.3820]

[2] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026 [hep-ph/0603175]

[3] Particle Data Group, C. Amsler et al., Physics Letters B667 (2008) 1

[4] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders, Les
Houches, France, 21 May - 1 Jun 2001 [hep-ph/0109068]

[5] L. Lönnblad and S. Prestel, JHEP 03 (2012) 019, arxiv:1109.4829 [hep-ph]

[6] L. Lönnblad and S. Prestel, JHEP 02 (2013) 094, arxiv:1211.4827 [hep-ph]

[7] L. Lönnblad and S. Prestel, JHEP 03 (2013) 166, arxiv:1211.7278 [hep-ph]

[8] For merging related questions, email stefan.prestel@thep.lu.se
In case of general problems, contact us under pythia8@projects.hepforge.org

19

Sherpa Tutorial

CTEQ School 2014

July 14, 2014

1 Introduction
Sherpa is a complete Monte-Carlo event generator for particle production at lepton-lepton, lepton-hadron,
and hadron-hadron colliders [1]. The simulation of higher-order perturbative QCD effects, including NLO
corrections to hard processes and resummation as encoded in the parton shower, is emphasized in Sherpa.
QED radiation, underlying events, hadronization and hadron decays can also be simulated. Alternatively,
Sherpa can be used for pure parton-level NLO QCD calculations with massless or massive partons.

Many reactions at the LHC suffer from large higher-order QCD corrections. The correct simulation of
Bremsstrahlung in these processes is essential. It can be tackled either in the parton-shower approach, or
using fixed-order calculations. Sherpa combines both these methods using a technique known as Matrix
Element + Parton Shower merging (ME+PS). Details are described in Ref. [2] and have been discussed
in the lectures. This tutorial will show you how to use the method in Sherpa.

Sherpa is installed on the virtual machine in /opt/hep, and its documentation is found online [3].
Example setups are located in /opt/hep/share/SHERPA-MC/Examples.

2 The Input File
Sherpa is steered using input files, which consist of several sections. A comprehensive list of all input
parameters for Sherpa is given in the Sherpa manual [3]. For the purpose of this tutorial, we will focus
on the most relevant ones.

Change to the directory tutorials/intro/sherpa and open the file Run.dat in an editor. Have a
look at the section which is delimited by the tags (run){ and }(run) (We will call this section the
(run) section in the following). You will find the specification of the collider, i.e. its beam type and
center-of-mass energy, as well as a couple of other parameters, which will be explained later.

The (processes) section specifies, which reactions are going to be simulated. Particles are identified
by their PDG codes, i.e. 1 stands for a down-quark, -1 stands for an anti-down, 2 for an up-quark, etc.
The special code 93 represents a “container”, which comprises all light quarks, b-quarks, and the gluon.
It is also called the “jet” container.

3 Running Sherpa
Have you found out which physics process is going to be generated? You can verify your guess by running
the command line

Sherpa

When run for the first time, Sherpa will produce diagram information for the calculation of hard scattering
processes. It will also produce source code for computing the hard scattering cross sections, which must
be compiled using

./makelibs

Have a look at the Feynman diagram, which contributes to the simulation of the hard process:

1

plot_graphs.sh graphs/

firefox graphs/index.html

Is this the diagram you expect? If not, which one is missing?
Next, run

Sherpa -e1 -o3

The option -e1 instructs Sherpa to produce one event, and the option -o3 will print the result of event
generation on the screen. You will see Sherpa’s internal event record. Search for Signal Process inside
the output and check incoming and outgoing particles. What happens to the unstable particle after it
has been produced in the hard scattering? Is this result physically meaningful?

4 Analyses
By default, Sherpa does not store or analyze events. Run Sherpa with the following command to perform
a simple analysis of the Higgs-boson kinematics:

Sherpa -a1

The configuration file for the analysis is Analysis.dat. It instructs Sherpa to produce a few simple
observables for diagnostic purposes. The output will be a directory called Analysis/, which contains
histogram files in plain text format. Use the script provided to plot these histograms

./plot_results.sh

Have a look a the plots by opening the file plots.ps with gv. Can you explain why there are no
differences in the rapidity distribution and large differences in the transverse momentum distribution?

5 MC@NLO matching
The current runcard lets Sherpa generate events at lowest order in the strong coupling. To improve the
description of real radiative corrections, we can include higher-multiplicity tree-level contributions in the
simulation. This is done by changing the process specification

Process 93 93 -> 25;

to

Process 93 93 -> 25;

NLO_QCD_Mode MC@NLO;

The second line instructs Sherpa to compute cross section at NLO and match the NLO calculation to
the parton shower using the MC@NLO method. The essence of this method is a modified subtraction,
which removes the approximate NLO corrections generated by the parton shower from the hard cross
section calculation before processing events in the parton shower.

Run the new setup. New source code will be created which you need to compile using

./makelibs

Run the setup again. Why does Sherpa compute two cross sections?
Produce a separate event sample with MC@NLO matching and analyze it, but store the analysis

results in a different directory than the previous runs. This can be done with the command

Sherpa -a1 -AAnalysis_MCNLO/

Compare the new results to your previous ones using the plot script. Do you observe any differences?
Why?

2

6 ME+PS merging
The current runcard lets Sherpa generate events at NLO in the strong coupling. To improve the descrip-
tion of real radiative corrections only, we can compute higher-multiplicity tree-level contributions in the
simulation. This is done by changing the process specification

Process 93 93 -> 25;

NLO_QCD_Mode MC@NLO;

to

Process 93 93 -> 25 93{1};

The last entry instructs Sherpa to produce up to one additional “jet” using hard matrix elements and
combine the respective process with the leading-order process. This is known as Matrix Element +
Parton Shower merging (ME+PS), or the CKKW method. The essence of the method is a separation of
hard from soft radiative corrections, achieved using phase-space slicing by means of a variable called the
jet criterion. The slicing parameter is called the merging cut.

Let us assume we want to classify jets of more than 20 GeV transverse momentum as hard. In Sherpa,
the corresponding merging cut would be specified as

CKKW sqr(60/E_CMS);

Therefore, the complete (processes) section for the merged event sample reads:

(processes){

Process 93 93 -> 25 93{1};

CKKW sqr(60/E_CMS);

Order_EW 1;

End process;

}(processes);

If you like, you can have a look at the Feynman graphs again, which contribute to the ME+PS merged
event sample. In this case, you should not remove the line Print Graphs graphs; from the (processes)
section, and rerun the plot command from Sec. 3.

Run the new setup. Why does Sherpa compute another cross section?
Produce a separate event sample with ME+PS merging and analyze it, but store the analysis results

in a different directory than the previous runs. This can be done with the command

Sherpa -a1 -AAnalysis_MEPS/

Compare the new results to your previous ones using the plot script. Do you observe any differences?
Why?

7 Playing with the setup
Here are a few suggestions to try if you have time left.

8 Unstable particles
Check the (run) section of the input file again. Add the setting HARD DECAYS 1; which instructs Sherpa
to automatically decay unstable particles. None of the particles produced in the hard scattering process
is set unstable, so this option by itself will have no effect. Verify this by checking the screen output of
Sherpa during runtime. Search for the ‘List of Particle Data’.

Now that you know about the problem, you can remedy the situation by including the following line
in the (run) section

STABLE[25] 0;

3

8.1 Changing the functional form of scales
You may have noticed the following line in the runcard

CORE_SCALE VAR{sqr(125)};

It invokes Sherpa’s interpreter to compute the renormalization and factorization scale for the pp → h
production process as the mass of the Higgs boson (Note that all scales have dimension GeV2, hence the
scale is squared using the sqr function).

You can change this to a different value. For example, you could use the transverse mass of the Higgs
boson:

CORE_SCALE VAR{MPerp2(p[2])};

Note that when you change the scale, the cross section will change and needs to be recomputed! You
can instruct Sherpa not to pick up the old result and compute a new one by launching it with the
commandline option -r Result NewScale/. New cross section information will then be stored in the
database Results NewScale.db, while the old is still present in the directory Results.db.

How do the observables change with the new scale and why? What is the effect of ME+PS merging
when using this scale?

8.2 Hadronization and underlying event
So far, multiple parton interactions, which provide a model for the underlying event, have not been
simulated. Also, hadronization has not been included in order to speed up event generation. You can
enable both by removing or commenting the line

MI_HANDLER None; FRAGMENTATION Off;

How do the predictions for the observables change and why?

8.3 Variation of the merging cut
ME+PS merging is based on phase-space slicing, and the slicing cut is called the merging scale. Is is
an unphysical parameter, and no observable should depend sizeably on its precise value. Verify this by
varying the merging cut by a factor of two up and down.

Note that the initial cross sections that Sherpa computes will be different for different values of the
merging cut (Why?). You should therefore instruct Sherpa to use different result directories for each run
in the test. The result directory is specified on the command line with option -r, for example

Sherpa -r MyResultDirectory/

8.4 Other hard scattering processes
Try to generate other hard scattering processes, like the production of a Drell-Yan muon pair (Hint: The
PDG id for the muon is 13.) You will have to insert an additional section into the runcard, which reads

(selector){

Mass 13 -13 66 116;

}(selector);

Why is this section needed?

9 Outlook
You may ask yourself what the meaningful variations are to assess the uncertainty of your Sherpa
predictions. We will try to answer this question in the next tutorial.

4

References
[1] T. Gleisberg et al. “Event generation with SHERPA 1.1.” JHEP 02 (2009) 007.

[2] A. Buckley et al. “General-purpose event generators for LHC physics.” Phys. Rept. 504 (2011) 145.

[3] https://sherpa.hepforge.org/doc/SHERPA-MC-2.1.1.html.

5

NTuples Tutorial

CTEQ School 2014

July 14, 2014

1 NTuples with Sherpa
The purpose of this tutorial is to generate Root NTuples which store NLO fixed-order events that can
be reweighted in order to change scales and PDFs. The tutorial is composed of two parts:

• The production of NTuples

• The usage of existing NTuples in a simple analysis

Root NTuples are a convenient way to store the result of cumbersome fixed-order calculations [1].
When using NTuples, one needs to bear in mind that every calculation involving jets in the final state is

exclusive in the sense that a lower cutoff on the jet transverse momenta must be imposed. It is therefore
necessary to check whether the event sample stored in the NTuple is sufficiently inclusive before using it.
Similar remarks apply when photons are present in the NLO calculation or when cuts on leptons have
been applied at generation level to increase efficiency. Every NTuple should therefore be accompanied
by an appropriate documentation.

In this tutorial we will generate NTuples for the process

pp→ h j

We identify parton-level jets using the anti-kT algorithm with R = 0.4. We require the transverse
momentum of these jets to be pT,j > 20 GeV. No other cuts are applied at generation level.

We will use Sherpa [2] for the production and analysis of the NTuples. Sherpa is installed on the
virtual machine in /opt/hep, and its documentation is found online [3]. Example setups are located in
/opt/hep/share/SHERPA-MC/Examples.

2 NTuple production
Sherpa is steered using input files, which consist of several sections. A comprehensive list of all input
parameters for Sherpa is given in the online manual [3]. Some of them have been explained in the Sherpa
introduction.

Change to the directory tutorials/intro/ntuples and open the file Run.B-like.dat in an editor.
Have a look at the section which is delimited by the tags (run){ and }(run). You will find the specifica-
tion of the collider, i.e. its beam type and center-of-mass energy, as well as a couple of parameters, specific
to NLO event generation, like the scale definition and the NTuple file name. The (selector) section de-
fines the jet cut. The (processes) section contains three different process specifications, corresponding
to Born, virtual and integrated subtraction contribution. Currently it is not possible to generate both
real-emission and born-type NTuples at the same time, which is why you will find a separate input file,
Run.R-like.dat, for the real-emission type contributions. This also allows to produce more events for
a certain event type if the statistics are too low. Typically, more events are needed for the real-emission
type contribution thank for the Born type.

Start Sherpa using the command line

Sherpa -f Run.B-like.dat

1

Sherpa will first create source code for its matrix-element calculations. This process will stop with a
message instructing you to compile. Do so by running

./makelibs

Launch Sherpa again, using

Sherpa -f Run.B-like.dat

Sherpa will then compute the Born, virtual and integrated subtraction contribution to the NLO cross sec-
tion and generate events. These events are analyzed and stored in a Root NTuple file called NTuple_B-like.root.
We will use this NTuple later to compute an NLO uncertainty band.

The real-emission contribution, including subtraction terms, to the NLO cross section is computed
using

Sherpa -f Run.R-like.dat

Events are generated, analyzed and stored in the Root NTuple file NTuple_R-like.root

The two analyses of events with Born-like and real-emission-like kinematics need to be merged using
the following command

Combine_Analysis -m=add Analysis/HTp/sum Analysis/HTp/BVI Analysis/HTp/RS

The result can then be plotted and displayed

./plot_results.sh

gv plots.ps

3 Usage of NTuples in Sherpa
Next we will compute the NLO uncertainty band using Sherpa. To this end, we make use of the Root
NTuples generated in the previous steps.

First we re-evaluate the events with the scale increased by a factor 2:

Sherpa -f Reweight.B-like.dat

Sherpa -f Reweight.R-like.dat

Then we re-evaluate the events with the scale decreased by a factor 2:

Sherpa -f Reweight.B-like.dat SCF:=0.25 -A Analysis/025HTp/BVI

Sherpa -f Reweight.R-like.dat SCF:=0.25 -A Analysis/025HTp/RS

The two contributions are combined using

Combine_Analysis -m=add Analysis/4HTp/sum Analysis/4HTp/BVI Analysis/4HTp/RS

Combine_Analysis -m=add Analysis/025HTp/sum Analysis/025HTp/BVI Analysis/025HTp/RS

Now we can display all three analyses in one plot

./plot_results.sh

References
[1] Z. Bern et el. “Ntuples for NLO Events at Hadron Colliders.” Comput. Phys. Commun. 185 (2014)

1443.

[2] T. Gleisberg et al. “Event generation with SHERPA 1.1.” JHEP 02 (2009) 007.

[3] https://sherpa.hepforge.org/doc/SHERPA-MC-2.1.1.html.

2

