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CP Violation in the Early Universe

* Very early in the universe might expect equal numbers of baryons and anti-baryons
 However, today the universe is matter dominated (no evidence for anti-galaxies, etc.)
* From “Big Bang Nucleosynthesis” obtain the matter/anti-matter asymmetry

g="8""8 "B 107

n n
14 4
i.e. for every baryon in the universe today there are 109 photons

How did this happen?

% Early in the universe need to create a very small asymmetry between baryons and
anti-baryons

e.g. for every 10° anti-baryons there were 10°+1 baryons
baryons/anti-baryons annihilate —)
1 baryon + ~10° photons + no anti-baryons

% To generate this initial asymmetry three conditions must be met (Sakharov, 1967):

©® “Baryon number violation”, i.e. 71p —Npg is not constant
® “C and CP violation”, if CP is conserved for a reaction which generates
a net number of baryons over anti-baryons there would be a CP
conjugate reaction generating a net number of anti-baryons
® “Departure from thermal equilibrium”, in thermal equilibrium any baryon
number violating process will be balanced by the inverse reaction



* CP Violation is an essential aspect of our understanding of the universe

* A natural question is whether the SM of particle physics can provide the
necessary CP violation?

* There are two places in the SM where CP violation enters: the PMNS matrix and
the CKM matrix
* To date CP violation has been observed only in the quark sector

* Because we are dealing with quarks, which are only observed as bound states,
this is a fairly complicated subject. Here we will approach it in two steps:
* i) Consider particle — anti-particle oscillations without CP violation
*ii) Then discuss the effects of CP violation

% Many features in common with neutrino oscillations — except that we will be
considering the oscillations of decaying particles (i.e. mesons) !



The Weak Interaction of Quarks

. Slightly different values of G measured in WL decay and nuclear 5 decay:

e

Gh = (1.166320.00002) x 10 5 Gev-2 G? = (1.136+0.003) x 1075 GeV 2

. In addition, certain hadronic decay modes are observed to be suppressed, e.g.
compare K~ — U~V and 17 — . v# . Kaon decay rate suppressed factor 20
compared to the expectation assuming a universal weak interaction for quarks.

i)\/vvx,< ~ 20x K i)vvv\,<
7 K 7 K

* Both observations explained by Cabibbo hypothesis (1963): weak eigenstates are
different from mass eigenstates, i.e. weak interactions of quarks have same
strength as for leptons but a u-quark couples to a linear combination of s and d

d\ [ cos6. sin6, d
s\ —sinB, cos6, s



GIM Mechanism

3. In the weak interaction have couplings between both ud and us which
implies that neutral mesons can decay via box diagrams, e.g.

cosf. W~ -
, | d ; A M, =< g}, cos 6, sin 6,
K uly Vi
é Historically, the observed branching
_m it TR was much smaller than predicted

* Led Glashow, llliopoulos and Maiani to postulate existence of an extra quark
- before discovery of charm quark in 1974. Weak interaction couplings become

COS 91/:';'< sin 91/::< Sll:/;VIL< COS ;/I::<

(. V2 c V2 c V2 ¢ V2
* Gives another box diagram for KV — utu
—-sinf, W~ 4 :
q > AN N—— U My o< —gy, cos B, sin 6,
K° clY A Ve Same final state so sum amplitudes
S—<hvn—e s IM|? = M) +M,|* ~

cosf, wt Cancellation not exact because m, # m,



i.e. weak interaction couples different generations of quarks

=|

u 7

_+_

SW 8w : 8w
cos 6, d sin 6, i s

V2 d )

(The same is true for leptons e.g. e"v,, e v,, e v; couplings — connect different generations)

% Can explain the observations on the prewous pages with 6, = 13.1°
Kaon decay suppressed by a factor of tan 6, ~ 0.05 relative to pion decay

d |cos 6, Vu 5 sin 6 Vu




CKM Matrix

% Extend ideas to three quark flavours (analogue of three flavour neutrino treatment)

d' Vud Vus Vub d By convention CKM matrix
/| = i defined as acting on :
S = | Ved Ves Veb ) ; .
| : quarks with charge — 1,
b’ Via Vis Vib b R, 3
Weak eigenstates CKM Matrix Mass Eigenstates
A —

(‘Cabibbo, Kobayashi, Maskawa )

e.g. Weak eigenstate (' is produced in weak decay of an up quark:

W / V*, 8w V* 8w v 2w
ﬁ d ud \/'a us \/7 NG
W+

e The CKM matrix elements V,-j are complex constants
* The CKM matrix is unitary
* The Vij are not predicted by the SM - have to determined from experiment



How many independent parameters?

3

'y, (1= ys)Vyd" = Z iy 7, Vady
i—1

||Mw
p—

Vua’ Vus Vub d
(i ¢ 0)| Vu Vo Vo || s e
th Vts th b
A complex 3x3 matrix has 18 real independent parameters and 9 if it is unitarity
If it were real, it would be orthogonal, with 3 independent parameters —— Euler angles

0

The six remaining are phase factors of ez

Equation (3K) is invariant under the transformation below:

dk — €i9kdk Vik — e_ig" Vik-



How many independent parameters?
. U B u et
9L = c11d + c128 + c13b Iy B Rlleiél + c198 + c13b I

_ it u’ _ it u'’
o Rlld + C,128 + C/13b I o Rlld -+ R128, -+ ngb, I

/ s’ 7 T
C1o = Ci0€ ° = Rige® s’ = se's
2 62‘5” c’
1L Ro1d + Rope®ts’ + Roze2l/ I

q3 _ 6?;5/// 't/ '
L R31d + R326253 s’ + R336254 b’ 7

. ¢/ N NS . L
We can absorb the overall phase ¢*° ,e’“S ,e’“S into field redefinition,

but not for §;, o, d3, d4



How many independent parameters?

/
QIl; — 6@'5’ ( ! / / )
Ry1d + Ry2s8" + Rasb’ /),
2 _ i c
dr — € ( R21d_|_ R2267L518/ + R2367352b/ )L
3 is! t/
L = ¢ ( Rgld -+ R326i53 S/ —+ R336i54b/ )L

We have 9 R and 4 phase, with the constraints
normalization of each ¢, 3 equation

orthogonality of any two qr 6 equations

Therefore, we endup with (9+4)-3-6=4

10



1)

2)

CKM Parameterization

1 0 0
V=10 cosfys sinbss
0 —sinfy3 cosbss
COS 913 0 sin 913€i5 COS (912 sin 912 0
X 0 1 0 —sinfi;9 cosfio O
—sinfi3¢® 0 cosfys 0 0 1
C12€13 $12€13 s13e” "
. —512€23 — 012823813€i(5 C12€23 — 812823<913€i(S §23C13
B §12523 — 0120238136“S —C12523 — 8126238136“S C23C13 ’
812 :)\: ‘VUS‘ 5 823:14)\2 :)\ ‘/Cb
\/|Vud‘2 + ‘VUSP Vs
AX3(p +in)V1 — A2)\4

s13€” = Vi = AN (p+in) =

(7

V1—M2[1— AZX4(p + i7)]

1—\?/2 A AN3(p — in)
Ve = ) 1— \2/2 A2 + oY
AN (1 —p—in) —AN 1

11



Three is special !

N generation —> Vxxnv complex matrix —> 2N? real parameters
Unitarity —> N? conditions —> N? real parameters

d — de'’
WHVigiLyudr, — WHVigiry, (edr) = WH(Vige') (ipy,dr)

ew can be absorbed in the redefinition of V;s without changing the physics. Thus
phase of any individual CMK matrix has no physical meaning. What really count is
the relative phase.

Number of phases which has no physical meaning are (2N-1)
Number of independent parameters in Vaxvare N2 — (2N — 1) = (N — 1)?
Orthogonal matrix gives N*2-N-N(N-1)/2=N(N-1)/2 mixing angels

Then the number of phase are

PO e L

=0 forN=1and 2
1 for N=3

12



Feynman Rules

» Depending on the order of the interaction, u—d or d — u,the CKM

matrix enter
atrix enters as either V , or "d

*Writing the interaction in terms of the WEAK eigenstates NOTE: u is the

adjoint spinor not
% u . — .8W 1 5 /
d’—)—q Jd'u=“[—l% 5(1—}’)10’
W

the anti-up quark
G . i _ 8w 1
Giving the |d — u| weak current: Jau =T [_,_ 5(] — }/5)] V,ad

V2

For u — d’' the weak current is:

Vo d g
) —/ W | 5
u Juat =d [_l 5(] —'}"):|Ll
_)_q‘,v+ \/i
In terms of the mass eigenstates g — d" Y — (Vudd)lf}'o = dT)’O “d_

- : : EW 1
Giving the |u — d| weak current: Jud = d ud [ 5(] — y5)] U

2
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Hence, when the charge —% quark enters as the adjoint spinor, the complex
conjugate of the CKM matrix is used

% The vertex factor the following diagrams:
u 3 u W W+ 3
W W= d u
- .8W
s iyt 7)

V2

% Whereas, the vertex factor for:
m d
u e—é a d —<—T ) >V\VY\;L» vv\‘//v\<
W+ W+ u

s EW s L1 —9P)

_lﬁ ud ! 3

u
d




% Experimentally determine

Via| [Vs| [Vis] 0.974 0.226 0.004
Vel Ves| V| | = | 023 0.96 0.04

% Currently little direct experimental information on V4, Vis, Vip

% Assuming unitarity of CKM matrix, e.g. |V,,,,|2 + IVcb|2 + |V,,,|2 = |
gives:
/Cablbbo matrix

------------------------------

|V"d| |V,,s| |V,,;,| 0 974 0. 226 0.004 Near diagonal — very
|va1| |VCS| |V€b| ~ 023 ...... 096 0.04 different from PMNS
Vial [Vis| |Vio) 0.01 0.04 0.999

* NOTE: within the SM, the charged current, W:t , weak interaction:
@ Provides the only way to change flavour !
@ only way to change from one generation of quarks or leptons to another !

% However, the off-diagonal elements of the CKM matrix are relatively small.
* Weak interaction largest between quarks of the same generation.
* Coupling between first and third generation quarks is very small !

% Just as for the PMNS matrix — the CKM matrix allows CP violation in the SM
15



Determination of the CKM Matrix

*The experimental determination of the CKM matrix elements comes mainly from
measurements of leptonic decays (the leptonic part is well understood).

* It is easy to produce/observe meson decays, however theoretical uncertainties
associated with the decays of bound states often limits the precision

e Contrast this with the measurements of the PMNS matrix, where there are few
theoretical uncertainties and the experimental difficulties in dealing with neutrinos
limits the precision.

0 Ivudl

from nuclear beta decay

u

‘/lld / V,
d—> w"<

e

Via| = 0.97377 £0.00027

(")

Super-allowed 0*—0* beta decays are
relatively free from theoretical uncertainties

[ o< |Vud|2

(=~ cos 6,)

16



® ||V,.|| [from semi-leptonic kaon decays ( X )
u
)
_ u < //u 4 ["ec |V,,S|2
: i V"‘s/ Ve
”’/b< Vis| = 0.225740.0021]  (=sin6,)

-

® V.dl from neutrino scattering| v, +N — utu—Xx (X )

Look for opposite charge di-muon events in V| scattering from production and
decay ofa D™ (cd) meson

Rate o< |V 4|*Br(D* — Xutv,)

opposite sign
uu pair

~

Measured in various
collider experiments

——<—\ = ||V.g| =0.230+0.011

17



|V

CSI

from semi-leptonic charmed meson decays

=

Ivcb

()

*Precision limited by theoretical uncertainties

. C_i KO r o< |‘/(8|2
d E /k . . . .

hY
C V(\

" V| = 0.957 +£0.017 +0.

093

N~ “——

et experimental error

theory uncertainty

from semi-leptonic B hadron decays

€.g. z/ D" R
B 1 " o< [Vep|”
(7

Ivubl

\Vep| = 0.0416 £ 0.0006

e

from semi-leptonic B hadron decays

C

[ o< |Vub|2

ub

()

()

V| = 0.0043 +0.0003

18



% Assuming unitarity of CKM matrix, e.g. |Vu,,|2 + |V(‘1)|2 + |V,,,|2 —

gives:

\Vea| [Ves| |Ven|
|V1d| |VISI |vlb|

PDG 2014

(lvud | |VHS| |Vub|

Near diagonal — very
different from PMNS

0.974 0.226:0.004
~ [10.23 0.96:0.04

0.01

0.04 0.999)

0.97427 = 0.00014 0.22536 == 0.00061 0.00355 = 0.00015

Vexkv = | 0.22522 £ (())(%%ggl 0.97343 + 0.00015
+0.
0.00886 Z 5 5p32

-

PQ

P= }

—

Measuring
Oy

{

assume SM

+0.0011

.,

2

/4

0.0414 £ 0.0012
0.99914 + 0.00005

i CKM element

Vit

19



The Neutral Kaon System

Neutral Kaons are produced copiously in
strong interactions, e.g.

7t~ (du) + p(uud) — A(uds) + K°(ds)
7t (ud) + p(uud) — K+ (us) + K (sd)+ p(uud)  p

* Neutral Kaons decay via the weak interaction

* The Weak Interaction also allows mixing of neutral kaons via “box diagrams”

SRy
K’ ¢ \) K’
\\~~’/
_ r*
K()(‘lg‘) ’A. ....... ..‘ K 1 (“g)
- -,
n~ (du) 7’ | n ~ 't (ud §— w&_“_)‘ <—d | _
i To— D [ SN %
/
n d—> “d >~Aw:~fv p—— S
S -
K (SH) " AR AR ‘ R{)(S(l)
w+
s < <+“—— d




The Neutral Kaon System

Neutral Kaons are produced copiously in
strong interactions, e.g.

7t~ (du) + p(uud) — A(uds) + K°(ds)
7t (ud) + p(uud) — K+ (us) + ?0(33) + p(uud) p

* Neutral Kaons decay via the weak interaction
* The Weak Interaction also allows mixing of neutral kaons via “box diagrams”

u,c,t

> S>>
KO - u,(‘,rV EO KO = Wt W 3 E()
S_<— S_. ¢« < ¢ 2 <

u,c,t
« This allows transitions between the strong eigenstates states K°. K

* Consequently, the neutral kaons propagate as eigenstates of the ov_e(;'all strong
+ weak interaction (Appendix ll); i.e. as linear combinations of K K

°These neutral kaon states are called the “K-short” K_g and the “K-long” K;

*These states have approximately the same mass m(Ks) ~ m(K) ~ 498 MeV

*But very different lifetimes:

T(Ks) =09 x 107195 [ [7(K.) =0.5%x 10775

21



CP Eigenstates

*The Kg and K; are closely related to eigenstates of the combined charge
conjugation and parity operators: CP

*The strong eigenstates KO(dE) and EO(SE) have JF = (-

with | PIKO) = —|K%), PK)=-|K)

*The charge conjugation operator changes particle into anti-particle and vice versa
A Al g— - —0
C|K") =C|ds) = +|sd) = |K")
A

similarly él?0> — |KO> ‘The + sign is purely conventional, could
have used a - with no physical consequences

*Consequently

i.e. neither KV or fﬂ are eigenstates of CP

Form CP eigenstates from linear combinations:
—0 A A
Ki)=J(K) —[K")| | CPIK:) = +IK1)
-0 AR
Ko) = (KO +[KY))| | CPlK2) = —|Ko)




Decays of CP Eigenstates

*Neutral kaons often decay to pions (the lightest hadrons)
*The kaon masses are approximately 498 MeV and the pion masses are
approximately 140 MeV. Hence neutral kaons can decay to either 2 or 3 pions

Decays to Two Pions: z
¥ KY — 7970 JP: 00 =0 +0" ® 0
*Conservation of angular momentum = L=0 72‘ n
=> P(n'70) = —1.—1.(—1)F = +1

0__ 1 - I\ : - 2
The T’ = ﬁ(uu —dd) is an eigenstate of C

C(n'n0) = Cn“ Cn' = -I-l +1=+1

¥ KY— a7 as before P(n:+ ) = +1
% Here the C and P operations have the identical effect

at P T Hence the combined effect of CP
® — P is to leave the system unchanged
\ n— C’\ \ 7r+ AA ....... +_ ......................

Neutral kaon decays to two pions occur in CP even (i.e. +1) eigenstates

23



Decays to Three Pions:

................ n() -Conservation of angular momentum: l/ mzﬁ‘n;mﬂz‘ojeacr;grlar
' LeL=0 = L=5h
70 /\Lz i P(A'r%n%) = —1. - 1. - 1.(=Db. (=12 = —1
e 0 0,770 0
S 0" Crrmm)=+1L+1.+1
| = CP(n°7°7%) = -1
*KO_)n_*_nnO ......................................................
7;+. E *Again L =1,
L% - Patmal)=—1.—-1.-1L(=D)h.(=1)2 = -1
T L, . _ _
\' 70 C(rta na’)=+1.C(ntn)=P(ntan )= (-1)b
L e rt P [
Hence: ECP(n’+7t—7L’O) = —1.(—1)["; .\on_ . .\o”+

*The small amount of energy available in the decay, m(K) — 3m(7t) ~ T0MeV
means that the L>0 decays are strongly suppressed by the angular momentum
barrier effects (recall QM tunnelling in alpha decay)

Neutral kaon decays to three pions occur in CP odd (i.e. -1) eigenstates

24



% If CP were conserved in the Weak decays of neutral kaons, would expect decays
to pions to occur from states of definite CP (i.e. the CP eigenstates K|, K>

|Kl> = %(lK% - IE0>) ép|K|) = +|K1> KW —nnr CP EVEN
K2) = 5 (1K) +|K")) | CPIKa) = —|Ka) | | Kz — mam | [cPODD

* Expect lifetimes of CP eigenstates to be very different
* For two pion decay energy available: mg —2my; =~ 220MeV
* For three pion decay energy available: myg — 3m, ~ 80MeV

* Expect decays to two pions to be more rapid than decays to three pions due to
increased phase space

* This is exactly what is observed: a short-lived state “K-short” which decays to
(mainly) to two pions and a long-lived state “K-long” which decays to three pions

(|KO) — |f0)) with decays: K¢ — 1r

1
7
K.) = |K) = \/LS(|KO) -+ |EO)) with decays: K; — AT

25



Neutral Kaon Decays to pions

«Consider the decays of a beam of K
*The decays to pions occur in states of definite CP

 If CP is conserved in the decay, need to
express KU in terms of Kgand K;

[Ko) = 75 (IKs) + |KL))

Hence from the point of view of decays to pions, a K beam is a linear
combination of CP eigenstates:
a rapidly decaying CP-even component and a long-lived CP-odd component
*Therefore, expect to see predominantly two-pion decays near start of beam
and predominantly three pion decays further downstream

>

K¢ —nm

At large distance left
with pure K, beam

K, — nnm /

Distance from K° production

Log Intensity
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% To see how this works algebraically:
Suppose at time t=0 make a beam of pure KO

Wt =0)) = 5 (1Ks) +|K2)

Put in the time dependence of wave-function Ks mass: m E
Ks(1)) = |Ks>e—imst—l“.s-t/2 ‘Ks decay rate: ['s=1/7g

NOTE the term ¢~ 1's’/2 ensures the Kg probability density decays exponentially
. 2 —I e — .
1.e. |llls|" — <KS([)|1<S([)> - e It — t/rS

Hence wave-function evolves as

v() = I K)o ms+ ) 4|k, Yo (met- )

Writing 93(1) e—(inls+£_-;_5)t and GL(I) — e_(i""'"LE-’L)’

W) = 5(6s(1)[Ks) +6.(1)|KL))

The decay rate to two pions for a state which was produced as K© :
[(KY o — 77) o< | (Ks |y (1)) |? o< |B5(1)[2 = 7" = ¢4/

which is as anticipated, i.e. decays of the short lifetime component K4

27




Neutral Kaon Decays to Leptons

Neutral kaons can also decay to leptons d n
—0 b —0 b p / &
K —rnTe V, K —nan u vy ¢ u
0 - 0 -+ s / -
K’ —=nmetv, K'—m urvy, K S v,
Note: the final states are not CP eigenstates —0
which is why we express these decays in terms of KO, K e

Neutral kaons propagate as combined eigenstates of weak + strong
interaction i.e. the Ky, K; . The main decay modes/branching fractions are:

Ks — =ntm BR = 69.2% K, — #ntn n° BR=12.6%
— 'z BR = 30.7% — 1722  BR=19.6%
— mwe'Vve, BR=0.03% — @wetv, BR=202%
— nte V., BR=0.03% — nte Vv, BR=20.2%
— mu'vy BR=0.02% — wpu'vy, BR=13.5%
— U Vy BR=0.02% — atu v, BR=13.5%

Leptonic decays are more likely for the K-long because the three pion decay

modes have a lower decay rate than the two pion modes of the K-short
28



Strangeness Oscillations (neglecting CP violation)
The “semi-leptonic” decay rate to T et Ve occurs from the KO state. Hence

to calculate the expected decay rate, need to know the KO component of the
wave-function. For example, for a beam which was initially KO we have (1)

W) = 5(6s(1)[Ks) +6.(1) K1)
Writing Kg, K; in terms of KO, EO

W) = 3 |6s()(IK®) ~ [K) +6.(1) (K°) + [K”)) |
= 1(65+6)K") + (6, 65)[K")

Because Og(7) # 6;(t) a state that was initially a K0 evolves
with time into a mixture of K0 and ?() - “strangeness oscillations”

The K° intensity (i.e. K° fraction):

(Ko — KY) = (K| y(1))|* = % 05+ 6, | (2)
Similarly  D(K[y — K°) = |(K’|(0)) = §[6s — 6. =

29



Using the identity |21 £ 22|* = |z1|? + |22|* £2R(2123)
|95:': 9L|2 — |e—(lrns+’_5rs)t ie—(umj-er t|2
. e—rsl 4+ e—rLI 4 zm{e—l’m‘gfe— %rsl .e+imLte—:'§l"Lt}

- - _I‘-+I‘,‘ . .
— e I“St_i_e rL’:i:Ze —‘5—_-,——t9{{e i(mg mL)t}

—Dgt —I'pt _r+r
= e S4e +2e "cos (mg —my )t

B B _r +FL
— e U Lo Tl L2 2 cos Amt

Oscillations between neutral kaon states with frequency given by the
mass splitting A;; — m(KL) _ m(Kg)

Reminiscent of neutrino oscillations ! Only this time we have decaying states.
Using equations (2) and (3):
LT _r. _ (T« ]
K, — K" = ) e Ts! e TLl 2o LsHILI/2 co5 Ami (4)
_ L ferse +e Tt — 2o~ (TsHTL2 cos At (5)
4

1“(Kz0=() - EO) =

30



Experimentally we find: [7(Kg) =0.9 x 10705 | [7(K) = 0.5 x 1077

and  |Am = (3.506+0.006) x 107> GeV
i.e. the K-long mass is greater than the K-short by 1 part in 1016

e The mass difference corresponds to an oscillation period of

21th
Tose = ~12x107°
‘ Am. 8

» The oscillation period is relatively long compared to the K lifetime and
consequently, do not observe very pronounced oscillations

[ T

Iﬂ(Kr0=() — KO) = % [e_r"" +e Tt 4 2~ (Ts+IL)t/2 cosAmt]

[ 0 0 i
- Ki—o— K | DKL —K)= }1 o e 2 (ST 2 cos A

o
o

|
1

Intensity

After a few Ky lifetimes, left with a pure K,
&7 |beam which is half K° and half K°

o

o

L
|

PRt L bl LT T,
fensene

02 - ‘-'.’K —
3 ," O _0
b "' —
K, —K
0 . 1 L ad PPN [NPEPURPUN] PO | 1
0 2 4 ) 8 10 12 14
t/10"s
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% Strangeness oscillations can be studied by looking at semi-leptonic decays

% The charge of the observed pion (or lepton) tags the decay as from either a f()
or KY because

0 — — _
K'—netv, K’ 4 netv,)| NOTALLOWED
—0 N but 0 i
K —nane Vv, K’ £ nate Ve

So for an initial K" beam, observe the decays to both charge combinations:

0 0 =)
KI=() — K Kt()z() — K
L T etv, L tte v,

which provides a way of measuring strangeness oscillations
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The CPLEAR Experiment

*CERN : 1990-1996

Used a low energy anti-proton beam
Neutral kaons produced in reactions

ﬁ[) _ K_ﬂ'+K0
ﬁp—)K+7t_EO

* Low energy, so particles produced
almost at rest

e Observe production process and
decay in the same detector

e Charge of KT inthe production
process tags the initial neutral kaon
as either g0or EV

e Charge of decay products tags the decay as either as being either KO or ?()

* Provides a direct probe of strangeness oscillations



An example of a CPLEAR event

pp —|K K

Decay: / Mixing

For each event know initial wave-function,

Tt e.g. here: |y(1 = 0)) = |K°)



Can measure decay rates as a function of time for all combinations:

e.g. Rt — F(Kxozo — 7r_e+ve) o< F(Kto:O = KO)

From equations (4), (5) and similar relations:

Ry =T(K"y— we"V,) = Ngeyy |eT5" + e 11! 2= IsHL)/2 co5 At

R_= l"(KO 0 — e V,) = Nm,v}1 e Vst o Tit — 2o~ (UsHIL)/2 cos Amt

-

_ = F(K, 0 AteV,) = Nm,v% e st 4 ot 4 2o~ (UsHIL)1/2 cos Amt

—
-

R, = l"(K 0 eTV,) = N,tev}1 e Tst oIt _ o= (stlL)t/2 cosAmt]

where Nzey is some overall normalisation factor

Express measurements as an “asymmetry” to remove dependence on Nzey

(Ri+R-)—(R-+Ry)
(R +R-)+ (R-+Ry)

Am —
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Using the above expressions for R etc., obtain

2eTs+TL)t/2 005 Amt

AAm —

A. Angelopoulos et al., Eur. Phys. J. C22 (2001) 55

0.5

0.4

0.3

0.2

0.1

0

0.1

% Points show the data

% The line shows the theoretical
prediction for the value of Am
most consistent with the CPLEAR
data:

Am = 3.485 x 10~ GeV

=
oSouse et et e Sageny g0t etenn® vree,

S 10 15 20
Neutral—=kaon decay time [ %]

*The sign of Am is not determined here but is known from other experiments
e When the CPLEAR results are combined with experiments at FermiLab obtain:

Am = m(Ky) —m(Ks) = (3.506 +0.006) x 10~1°> GeV
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CP Violation in the Kaon System

% So far we have ignored CP violation in the neutral kaon system
% ldentified the K-short as the CP-even state and the K-long as the CP-odd state

Ks) = |K1)
KL) = |K2)

5%(
_ 1
:%(

K0 — |E0>) with decays:

|KO) 4 |EO>) with decays:

K¢ —nm

K, — nnn

CP = +1

CP = -1

% At a long distance from the production point a beam of neutral kaons will
be 100% K-long (the K-short component will have decayed away). Hence,
if CP is conserved, would expect to see only three-pion decays.

% In 1964 Fitch & Cronin (joint Nobel prize) observed 45 K; — T~ decays
in a sample of 22700 kaon decays a long distance from the production point

—

Weak interactions violate CP

CP is violated in hadronic weak interactions, but only at the level of 2 parts in 1000

K, to pion BRs:

ata n® BR=12.6%
°7%2°  BR =19.6%
' BR = 0.20%
n’n’ BR = 0.08%

K

111

CP=-1
CP=-1
CP=+1
CP=+1
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% Two possible explanations of CP violation in the kaon system:
i) The Kg and K| do not correspond exactly to the CP eigenstates K, and K,

Ks) = ——— (1K) + €lk)] | | 1KL) = ——— [1Ka) + £]K1)

1 + g2 V1+|g?
with |€] ~2x 1073
*In this case the observation of K; — &7 is accounted for by:

1

K1) = = [|K>) +€|K1)]
1 + |g|?
|_) nmr |CP=+1
AT |ICP=1

if) and/or CP is violated in the decay

K1) = |K;) |CP=-1

‘ e |CP = -1 Parameterised by 8,
nw |(CP=+1

% Experimentally both known to contribute to the mechanism for CP violation in the

kaon system but i) dominates: g’/g =(1.7£0.3) x 103 &?:3 ((,?jmiab)

% The dominant mechanism is discussed in examinable Appendix lll
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CP Violation in Semi-leptonic decays

% If observe a neutral kaon beam a long time after production (i.e. a large distances)
it will consist of a pure K, component

KL) = (1+¢€)|Ko)+(1—¢)K")
L f\/1+|e [ L,,ﬁe—v |_]>7t‘e+ve

% Decaysto 7 e™ V., must come from the K component, and decays to
7t+e_7 must come from the KO component

(K, — rte v(,)o<|( |1<,>|2o<|1 el ~1-2%R{¢e)
(KL — et v,) o< |(KO|KL)|? o< |1 + €] ~ 1 +2R{e)

% Results in a small difference in decay rates: the decay to 1 ¢t V, is
0.7 % more likely than the decay to g+¢~y,

*This difference has been observed and thus provides the first direct
evidence for an absolute difference between matter and anti-matter.

% It also provides an unambiguous definition of matter which could, for example,
be transmitted to aliens in a distant galaxy

“The electrons in our atoms have the same charge as those emitted
least often in the decays of the long-lived neutral kaon”
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CP Violation and the CKM Matrix

* How can we explain T'(K,_, — K°) # (K, — K’) interms of the CKM matrix ?
% Consider the box diagrams responsible for mixing, i.e.

W q
T4 YV 2T s 47> 2> 3> s
K @Yy A4 R K wt Sw- | _ K
S—emv?{»—ed S <2 < d
q

where ¢ ={u,c,t}, q = {u,c,t}

% Have to sum over all possible quark exchanges in the box. For simplicity
consider just one diagram

vc'd V*
¥ 'vvv\,e—
K cVY /\t i EO Mfi OCAC,V((IV VrdV*
o |
S —?’V\/\/\V—é d N A constant related
cs td

to integrating over
virtual momenta
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%* Compare the equivalent box diagrams for KV — EO and f() — KV

VC(I V,’: V(.s tt[
d > ‘ s g >—(VVV\[D— g
KO . cV t a ?O ?O - cV At K()
S d S
—e* —e*'\/\N\;—é
V(b vrd cd VIS
Mji o< AaVeaVisViaVs M) o< AV VesViVis = M},

% Therefore difference in rates
D(K® —K')~T(K — K°) o< My — M}; = 23{My;}
% Hence the rates can only be different if the CKM matrix has imaginary component
€] o< 3{Mi}

% A more formal derivation is given in Appendix IV

% In the kaon system we can show

|8| < Ayt SS{vud usvldvtt} + A S{V(d thvtt} +A113{thvttvtdvtt}

Shows that CP violation is related to the imaginary parts of the CKM matrix
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Summary

% The weak interactions of quarks are described by the CKM matrix

% Similar structure to the lepton sector, although unlike the PMNS matrix,
the CKM matrix is nearly diagonal

% CP violation enters through via a complex phase in the CKM matrix

% A great deal of experimental evidence for CP violation in the weak
interactions of quarks

% CP violation is needed to explain matter — anti-matter asymmetry in the
Universe

* HOWEVER, CP violation in the SM is not sufficient to explain

the matter — anti-matter asymmetry. There is probably another mechanism.
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Appendix ll: Particle — Anti-Particle Mixing

*The wave-function for a single particle with lifetime 7 = ]/I" evolves with time as:
‘V(t) — Ne—l“t/ze—th
which gives the appropriate exponential decay of
(W(O)|y(r)) = (y(0)|y(0))e /7
°The wave-function satisfies the time-dependent wave equation:
Aly(0) = (01— Ji]l (o) = i 2 |w(o) (A1)

°For a bound state such as a KO the mass term mcludes the “mass” from
the weak interaction “potential” H, ..

A KO\ Hyeax | )7 _—|Sum over
M = Mo + (Kﬂleeak|K0> + Z |< ml weaZ!])l ¢ intermediate
' KO — &=

states j
| ¢
\
d >— (VW2 d | The third term is the 2" order
KY cVY /'\t K9 [term in the perturbation expansion
S = correspondlnq to box dlagrams
< < S resulting in KV — KV
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* The total decay rate is the sum over all possible decays KV — f

I'= 271'2 | (f'l:lweak |K0> |2p;: +——] Density of final states
f

% Because there are also diagrams which allow KO — ?0 mixing need to
consider the time evolution of a mixed stated

w(t) = a(t)K®+b(t)K" (A2)

% The time dependent wave-equation of (A1) becomes

<M|1 — 5l Mlz—%iﬂz) (|§3(’)>> :ii (|§g(’)>) (A3)
le—%irzl Mzz—%irzz |K (t)> ot IK (t)>

the diagonal terms are as before, and the off-diagonal terms are due to mixing.

H K9 2
My = mgo + + (K°|Hyeax | K") +Z| | Hyeak|K”)|
Mg0 — E,
§ 2 =0 —>—
Mp=Y (K®|Hyeax| /)" (i Hweak K)o ) CTe)
j 'nKO - E_I § d
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*The off-diagonal decay terms include the effects of interference between
decays to a common final state

A . A —0
Iﬂ12 - 27[2(f|Hweak|K0> (leweak|K >Pr
/

°In terms of the time dependent coefficients for the kaon states, (A3) becomes

- §) 1)

where the Hamiltonian can be written:
. My, M> L (T T
s () -4 (2 B2)
‘2 Mp, M»>; 2\ I I'p

*Both the mass and decay matrices represent observable quantities and are
Hermitian

M||=Mikl, M22=M527 M|2=M51
[ =17, Ta=I%, INa=TI5

*Furthermore, if CPT is conserved then the masses and decay rates of the
and KUVare identical:

My =Mpy=M, TI|)1=In="_

K’
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*Hence the time evolution of the system can be written:
M—%ir Mlz—%il“lg a _li a v
12— 3, M—5il b ot (A4)

*To solve the coupled differential equations for a(t) and b(t), first find the
eigenstates of the Hamiltonian (the K, and Kg) and then transform into

this basis. The eigenvalue equation is:

1:’1—%1:1"* MIZ_%{FQ X1\ _ 5 (% (A5)
Mi, —5il", M —5il X2 X
Which has non-trivial solutions for
H— Al =

= (M —3iT—A)*>— (M}, — 3i[},) (M2 — 3iT12) =0
with eigenvalues

A =M= 40+ /(M;, — 5iT3,) (Min — §iT1o)

*The eigenstates can be obtained by substituting back into (A5)
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(M — 3iD)x) + (M1 — 3iTj2) = (M — il + \/(Mfz — i) (M2 — 5iT12))x)

= | s
= 2 _ 4 [HeT ?I.FD
X M, —511“12
% Defi * |
sHne n= 12— 2
My, — 3il)2
% Hence the normalised eigenstates are
| 1 I 0 —0
Ka) = () - (K% £ n[R%)
VIAPEA\E) /TP

% Note, in the limit where M,, I'|> are real, the eigenstates correspond to the
CP eigenstates K, and K,. Hence we can identify the general eigenstates as

as the long and short lived neutral kaons:

Ke) = ———(IK%) +nIK")| |IKs)

V1+n|

(K% —n[K"))

]
V1+n/?
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% Substituting these states back into (A2):
() = a0k +b@)K’)
= [ +|n|? a(t)(K K)+E(KL_KS)]

(-5 (25

= y/1+nl?
- ] -*?: |n|2 [aL(I)KL+as(I)K5]
with e |
ar(t)=al(t)+ ? as(t) =a(t) — ?

%* Now consider the time evolution of a; (1)

da; da i db

I— =1i—+

dt ot moat

% Which can be evaluated using (A4) for the time evolution of a(t) and b(t):
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day.
ot

% Hence:

with

and

my.

[,

! ,
(M= 3T y)ac+ (Mi = 3T ,)b] + (M}, — 4T )a+ (M = 3iT)b)

! .
(M - Lir) ( )+(M|o $il,,)b+ E(Mfz—%il"lz)a

(M — 3iD)ag + (M2 — 5iT,)b+ (\/(M,*2 — 3l ) (M2 — %il‘lz)> a

(M — 3il)ag + <\/(M,*2 — 4l (M2 — %irn)) (a+ %)

(M — 3iT)ar, + (\/(M;*2 — 5il},) (M2 — %irn)) ar

(mL - %il"L)aL

2aL
"ot

M+9T{\/(Mrz - %’T:z)(MIZ - %’le)}
= I'-23 {\/(M;*2 — i) (M2 — %il“.z)}

= (mL — —:'Z-il"L)aL
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% Following the same procedure obtain:

with mg = M—SK{\/(M]"Q— %irtz)(Mlz—%irlz)}
and Iy = I“+23{\/( Tz“%’.r:z)(Mlz‘%"rlz)}
% In matrix notation we have

Mp—3il, 0 a\ _.9 (a
0 Mg—%il"s as) ot \as

% Solving we obtain

aL(t) ac e—inz1,t—l"1_t/2 as(t) oc e—im_gt—rsl/2

% Hence in terms of the K, and K basis the states propagate as independent

particles with definite masses and lifetimes (the mass eigenstates). The time
evolution of the neutral kaon system can be written

|W(’)> =ALe_i"'L’_rL’/2|KL> +Ase—ilngt—r_gt/2|Kg>

where A, and Ag are constants
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Appendix lll: CP Violation : 7tit decays

% Consider the development of the g0 _ EO system now including CP violation
% Repeat previous derivation using

I 1
Ks) = s (K +elKD]  |Ki) = s [ + i)

*Writing the CP eigenstates in terms of KO, EO
0.
[KL) = (1+€)|Ko)+ (1) K')
\/_ 2 /1 + |.€|2 :
IKs) =
\/_ 2 /1+|€]?

eInverting these expressions obtain

B e NN RN NN NN NN EEEEEEEEEEEEEEEEEEAEEEEEEASEEEEEESEEEEESSSEEEEESEEEEE NN NS NN AN NN EEE NN EEEE AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEsEEEEEEEEEEEE

(1+e>|1<o>—(1—e)|?">

I +e> 1 =0 I +e> 1
|K° K1) +|K K = K1) —|K
BTN e M) Y T e M T
*Hence a state that was produced as a KO evolves with time as:
1 +|e]> 1
1)) = 0,.(1)| K Os(1)|K
lw(1)) > 1a g (L(OIKL) +65(1)|Ks))

. I . r
where as before Bs(t) = e—(""S’L‘ii)' and GL(t) — e—(”"L+"_“)’
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oIf we are considering the decay rate to it need to express the wave-function

in terms of the CP eigenstates (remember we are neglecting CP violation
in the decay)

é (|K2) +€|K1)) 6L (1) + (K1) + €]K2)) O5(1)]
1
I+e

ly(t)) =

Sl 5l

m

(05 +€6L)|Ky) + (6, + €65)|K2)]
| CP Eigenstates

*Two pion decays occur with CP = +1 and therefore arise from decay of the
CP = +1 kaon eigenstate, i.e. K,

11 |?
(kg — 27) o< (KW = 5 |1 | 165+ e6,
Since || < 1
1|2 | 1
I +¢€ (1+€*)(14+¢€) 1+42R{e} €}

‘Now evaluate the |5+ €6, |> term again using
12 :t22|2 4 |2 + |22|2 +2R(z125)
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|95+89L|2 - |e—i"l.91—£§t +€e_i"’L’—E.{"|2
— e_rst + |8|28—FLI + zm{e—imst— ]-._;51.8*6_{_,-,,,1‘,_ l—f‘t}
Writing € = |£|ei¢
IOS + 89L|2 — e_rst - |8|2e_r1,l + 2|g|e_(FS'*'FL)’/29{{ei("’L—"'.€)f—¢}

= e 5 4 |e|Pe Tt 4 2)g|le” TSIV cos(Am.t — §)
*Putting this together we obtain:

| |
C(Klo—am) = 5(1-2%R{e})Nux [e IS+ |e|Pe T +2lele TsHTL)I/2 cos(Am.t — ¢)]
P x »
/ \ \
Short lifetime CP violating long Interference term
component lifetime component
Ks—an K —nn

°In exactly the same manner obtain for a beam which was produced as ?O

1
I"(f?_(, — ) = 5(1 +2R{€} )Nz [e st 4+ |e|?e 0! —K2|£|e (OsH0L2 cos(Am.t — ¢)]

\
Interference term changes sign
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% At large proper times only the long lifetime component remains :
1
(K", — m) — (1= 2R{€})Npz.|e|?e TV

i.e. CP violating K; — g decays

% Since CPLEAR can identify whethﬂ; a KO or fO was produced, able to
measure [(K ,— nn) and ['(K,_, — 77)

Prediction with CP violation

bl Dobdbadl] Yuladdly] [piellid L] uilailally] iRl Tadaillly] [ilafbid BAAIE 2 -
! 3 S - CPLEAR data
] 2107k ™
( C10°F -
! : 5 | o, A A
; 3 [ i .
: g1t
o 10 E z g .°-9
[ ] i .
® — ] 5L - . oo 540
g 0o AT ' 107 = tagged initial K
g 10 E : &y
© E L “ .
e : 104 | o"-
0" B :
K; —nr :
s v
10 pr V4 E tagged initial KO + ” *ftf’ ¢
F R0 = AT AN\ f 102; 1
[ TR PP BRI PR TPRRTEE SPPEIE SPRPLIE TP TR T A
0 o‘“}.lsuu;u‘715‘“310“7213“1‘§<f715‘“2lo“255 25 2 4 6 8 70 12 14 6 8 2
t/10"s Neutral-kaon decay time [tg)

+ interference term




% The CPLEAR data shown previously can be used to measure € = |£|ei¢

Define the asymmetry: AL - r (E):() — nn)—-I[(K", — nx)

*Using expressions on page 443
4R{e} [e 15" + |e]PeTL!] — 4|ele~TLHTs)/2 cos(Am.t — ¢)
T 2[e TS + |e2eTut] — 8R{e}|e|e~ TLHT9)/2 cos(Am.t — @)

N— I
—_——

o< |€|R{ €} i.e. two small quantities and
can safely be neglected

2R{e} [e 15" + |e|PeT1!] —2|e|e~TLtT8)/2 cos(Am.t — @)
e—rsl + |8|2e—FLr
2|e|eTLtTs)/2 cos(Am.t — ¢)
eIt + |8|2e—FL’
2|e|eTs=TL)/2 cos(Am.t — @)
1+ |g|2e(rs—r1,)’

A+_ ~

=2R{e} —

=2NR{e} —
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Asymmetry A.e].)f

A.Apostolakis et al., Eur. Phys. J. C18 (2000) 41
0.5 ¢

0.4

0.3 [
0.2
0.1F

1]
01}
-0.2|
03
-0.4
"0.5¢

T S S S NV S B

2 4 6 8 10

R [ |

12 14 16 18 20
Neutral-kaon decay time [1]

Best fit to the data:

le| = (2.2644+0.035) x 103
¢ = (43.19+0.73)°
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Appendix IV: CP Violation via Mixing

% A full description of the SM origin of CP violation in the kaon system is beyond

the level of this course, nevertheless, the relation to the box diagrams is
illustrated below

% The K-long and K-short wave-functions depend on 1

_ I 0 7V _ I N |V
K1) = s (K + 1K) | 1Ks) (1K) —nlK"))

V14l
with n = | M2 — 2T
My, — il

*If M{, =M, ,» =1'12 then the K-long and K-short correspond to
the CP eigenstates ré and K,

*CP violation is therefore associated with imaginary off-diagonal mass
and decay elements for the neutral kaon system

*Experimentally, CP violation is small and 1) ~ 1

*Define: £ = ﬁl — T] = :I_—g
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*Consider the mixing term M2 which arises from the sum over all possible
intermediate states in the mixing box diagrams

e.g. S Ved Vi S
S
K d cVY t —0
i N | K M2 = ActVeaVesVisVia + -
S—e'\/\/\/\—éd
V(t Vrd

*Therefore it can be seen that, in the Standard Model, CP violation is associated
with the imaginary components of the CKM matrix

It can be shown that mixing leads to CP violation with
|€] o< S{M 2}
*The differences in masses of the mass eigenstates can be shown to be:
GZ
Amg = mg, —mg, ~ Z 3 meK|qu qudV(;s|mqmq/
9.9
where ¢ and q’ are the quarks in the loops and fK Is a constant
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In terms of the small parameter €

1 i —0. ]

KL) = (1+¢)|K°) +(1—¢)|K")
24/ 1 2 1 )

vV 1+|€| _ 0 L

K9 = 3oy (19K + (149K

% If epsilon is non-zero we have CP violation in the neutral kaon system

| = - .
Writing n = My, — 3, _ i and z=ae"?
| M>» — %irn 3

gives nN=e'?
% From which we can find an expression for g
ot ] —e " 1—e™  2—cos¢ a2 9
. = . . an- —
l4+e @ 1+4+e?® 2+4cos¢ 2
€] = [tan §|
% Experimentally we know ¢ is small, hence ¢ is smaII
| l 3{M>—3il,,}
€| ~ —¢ = SagI N 12
2 M- ilrlzl



Appendix V: Time Reversal Violation

*Previously, equations (4) and (5), obtained expressions for strangeness
oscillations in the absence of CP violation, e.g.

I-‘(Kz()=0 — K') =

% [e—l“sf +e T 4 2o~ (TsHIL)t/2 cosAmt]

*This analysis can be extended to include the effects of CP violation to give the

following rates

—FS’ + e—rLf 4- 28—(FS+FL)I/2 cos Amt

-

~(Ts+TL)1/2 005 Amt

Cet _ 90— (Ts+TL)/2 065 Amit

-

-

F(KO — KY) o }1
[(K—o—K') o< §
r(“’ — K9) 1( +4<Jt{e})_
% Including the effects of CP violation find that
—0 —0
[(Ky_o — K°) #T(K2, — K")

Violation of time reversal symmetry !

% No surprise, as CPT is conserved, CP violation implies T violation
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