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CP Violation in the Early Universe
• Very early in the universe might expect equal numbers of baryons and anti-baryons 
• However, today the universe is matter dominated (no evidence for anti-galaxies, etc.) 
• From “Big Bang Nucleosynthesis” obtain the matter/anti-matter asymmetry 

i.e. for every baryon in the universe today there are          photons      

 How did this happen?
★ Early in the universe need to create a very small asymmetry between baryons and 
     anti-baryons

e.g. for every 109 anti-baryons there were 109+1 baryons 
        baryons/anti-baryons annihilate  
                 1 baryon + ~109 photons + no anti-baryons

★ To generate this initial asymmetry three conditions must be met (Sakharov, 1967):
❶ “Baryon number violation”, i.e.                     is not constant  
❷ “C and CP violation”, if CP is conserved for a reaction which generates 
          a net number of baryons over anti-baryons there would be a CP 
          conjugate reaction generating a net number of anti-baryons  
❸ “Departure from thermal equilibrium”, in thermal equilibrium any baryon 
      number violating process will be balanced by the inverse reaction
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• CP Violation is an essential aspect of our understanding of the universe 

• A natural question is whether the SM of particle physics can provide the  
     necessary CP violation? 

• There are two places in the SM where CP violation enters: the PMNS matrix and 
      the CKM matrix 
• To date CP violation has been observed only in the quark sector 

• Because we are dealing with quarks, which are only observed as bound states,   
     this is a fairly complicated subject. Here we will approach it in two steps:  

• i) Consider particle – anti-particle oscillations without CP violation  
•ii) Then discuss the effects of CP violation

★ Many features in common with neutrino oscillations – except that we will be 
    considering the oscillations of decaying particles (i.e. mesons) ! 
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The Weak Interaction of Quarks
1.  Slightly different values of GF measured in µ decay and nuclear β decay:

2.  In addition, certain hadronic decay modes are observed to be suppressed,  e.g.  
     compare                           and                         . Kaon decay rate suppressed factor 20 
     compared to the expectation assuming a universal weak interaction for quarks.     

• Both observations explained by Cabibbo hypothesis (1963): weak eigenstates are  
   different from mass eigenstates, i.e. weak interactions of quarks have same  
   strength as for leptons but a u-quark couples to a linear combination of s and d

⇠ 20⇥
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GIM Mechanism
3.  In the weak interaction have couplings between both         and        which  
     implies that neutral mesons can decay via box diagrams, e.g.

Historically, the observed branching 
   was much smaller than predicted

★ Led Glashow, Illiopoulos and Maiani to postulate existence of an extra quark   
        - before discovery of charm quark in 1974. Weak interaction couplings become 

d

s

d

s

★ Gives another box diagram for

Same final state so sum amplitudes

Cancellation not exact because 
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★ Can explain the observations on the previous pages with 
Kaon decay suppressed by a factor of                              relative to pion decay 

i.e. weak interaction couples different generations of quarks

Hence expect

(The same is true for leptons e.g. e- ν1 , e- ν2 , e- ν3  couplings – connect different generations) 
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CKM Matrix
★ Extend ideas to three quark flavours (analogue of three flavour neutrino treatment)

( Cabibbo, Kobayashi, Maskawa )

By convention CKM matrix  
defined as acting on  
quarks with charge  

Weak eigenstates CKM Matrix Mass Eigenstates

 e.g. Weak eigenstate          is produced in weak decay of an up quark:        

• The CKM matrix elements        are complex constants 
• The CKM matrix is unitary 
• The        are not predicted by the SM – have to determined from experiment
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How many independent parameters?

The matrix is called the Cabibbo–Kobaiashi–Maskawa (CKM) matrix. It is

unitary, namely

VVþ ¼ 1: ð7:87Þ

The three-family expression of the charged-current interaction is

X3

i¼1

!uic! 1% c5ð ÞVikd
k ¼

X3

i¼1

!uiLc!Vikd
k
L ð7:88Þ

where we have set u1¼ u, u2¼ c, u3¼ t, d1¼ d, d2¼ s, d3¼ b. Focussing on the

flavour indices, the structure is

!u !c !tð Þ
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0

@

1

A
d
s
b

0

@

1

A: ð7:89Þ

This justifies the names of the indices of the matrix elements.

We shall now determine the number of independent elements of the matrix. A

complex 3 · 3 matrix has in general 18 real independent elements, 9 if it is

unitary. If it were real, it would be orthogonal, with 3 independent elements,

corresponding to the three rotations, namely the Euler angles. The 6 remaining

elements of the complex matrix are therefore phase factors of the exp(id) type.
Not all of them are physically meaningful.

Indeed, the particle fields, the quarks in this case, are defined modulo an

arbitrary phase factor. Moreover, (7.89) is invariant for the substitutions

dk ! eihkdk Vik ! e%ihkVik: ð7:90Þ

With three such substitutions we can absorb a global phase for each row in the d

type quarks, eliminating three phases. Similarly, we can absorb a global phase

factor for each column in a u type quark. It seems, at first, that the other three phase

factors can be eliminated, but only two of them are independent. Indeed V does not

change when all the d and all the u change by the same phase. Consequently, the

six phases we used to redefine the fields must satisfy a constraint; only five of them

are independent. In conclusion, the number of phases physically meaningful is

6% 5¼ 1. Summing up, the three-family mixing matrix has four free parameters,

which can be taken to be three rotation angles and one phase factor exp(id).
Going back to two families, the 2 · 2 unitary matrix has four independent real

parameters. One of them is the Cabibbo rotation. The other three are phase

factors. Two of them can be absorbed in the d type quarks and two in the u type

ones. This makes four and, subtracting one constraint makes three. As antici-

pated, the matrix is real.
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ei�

Equation  (e) is invariant under the transformation below:

e



We can absorb the overall phase                        into field redefinition, 
but not for 
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How many independent parameters?

s0 = sei⇣
00

c012 = c12e
�i�0 = R12e

i⇣00

q1L =

✓
u

c11d+ c12s+ c13b

◆

L

=

✓
u0ei�

0

R11ei�
0
+ c12s+ c13b

◆

L

= ei�
0
✓

u0

R11d+ c012s+ c013b

◆

L

= ei�
0
✓

u0

R11d+R12s0 +R13b0

◆

L

q3L = ei�
000
✓

t0

R31d+R32ei�3s0 +R33ei�4b0

◆

L

q2L = ei�
00
✓

c0

R21d+R22ei�1s0 +R23ei�2b0

◆

L

ei�
0
, ei�

00
, ei�

000

�1, �2, �3, �4
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How many independent parameters?

q3L = ei�
000
✓

t0

R31d+R32ei�3s0 +R33ei�4b0

◆

L

q2L = ei�
00
✓

c0

R21d+R22ei�1s0 +R23ei�2b0

◆

L

q1L = ei�
0
✓

u0

R11d+R12s0 +R13b0

◆

L

We have 9 R and 4 phase, with the constraints 
normalization of each                    3 equation 
orthogonality of any two                6 equations 

qiL
qiL

Therefore, we end up with   ( 9 + 4 ) - 3 - 6 = 4
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CKM Parameterization

29.3 Fermion sector 597

unaffected as well, since these do not mix up- and down-type quarks. The only things that
are sensitive to the flavor rotations are the W±

µ couplings. Thus we have

Lmass-basis =
e

sin θw
ZµJZ

µ + eAµJµ
EM −md

j

(
d̄j

Ldj
R + d̄j

Rdj
L

)
−mu

j

(
ūj

Luj
R + ūj

Ruj
L

)

+
e√

2 sin θw

[
W+

µ ūi
Lγ

µ(V )ijdj
L + W−

µ d̄i
Lγ

µ
(
V †)ijuj

L

]
, (29.56)

where V = U†
uUd. Thus, all of the interesting mixing effects are given by a single matrix,

V ≡ U†
uUd =

⎛

⎝
V11 V12 V13

V21 V22 V23

V31 V32 V33

⎞

⎠ =

⎛

⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎠ , (29.57)

known as the Cabibbo–Kobayashi–Maskawa (CKM) matrix.
The CKM matrix is a complex unitary matrix, and thus has nine real degrees of freedom.

If V were real, it would be an O(3) matrix, with three degrees of freedom. These are the
three rotation angles. Thus there are three angles and six phases in V . However, we can
use the U(1)6 symmetry in Eq. (29.54), under which the masses are invariant, to set some
phases to zero. Under these transformations, V generally transforms. However, if all the
rotations are the same, αj = βj = θ, then V is unchanged. Thus we can only eliminate five
phases this way, leaving overall four degrees of freedom: three angles and one phase. If we
call the three angles θ12, θ23 and θ13, corresponding to rotations in the ij-flavor planes,
and the phase δ, the most general CKM matrix can be written as

V =

⎛

⎝
1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

⎞

⎠

×

⎛

⎝
cos θ13 0 sin θ13eiδ

0 1 0
− sin θ13eiδ 0 cos θ13

⎞

⎠

⎛

⎝
cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

⎞

⎠

=

⎛

⎜⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎟⎟⎠ , (29.58)

where cij ≡ cos θij and sij ≡ sin θij . This has become a standard parametrization. The
numerical values for the angles and phase are θ12 = 13.02◦ ± 0.04◦, θ23 = 2.36◦ ±
0.08◦, θ13 = 0.20◦ ± 0.02◦ and δ = 69◦ ± 5◦ [Particle Data Group (Beringer et al.),
2012].

Note that all the rotation angles are relatively small. Thus, the mass and flavor bases are
fairly close and the CKM matrix is nearly diagonal. To a good approximation, θ23 and θ13
are negligible, and the biggest one, θ12, gives all the flavor mixing. It is sometimes helpful
to abbreviate this fact with an approximate parametrization in terms of λ ≡ sin θ12 =
0.22 as

|V | ≈

⎛

⎜⎝
1− λ2

2 λ λ3

−λ 1− λ2

2 λ2

λ3 λ2 1

⎞

⎟⎠+ O
(
λ4
)
. (29.59)
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12. THE CKM QUARK-MIXING MATRIX

Revised February 2014 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

12.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (12.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (12.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (12.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)

K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (http://pdg.lbl.gov)
August 29, 2014 13:59
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Three is special !
N generation —> VNxN complex matrix —> 2N2 real parameters
Unitarity —> N2 conditions —> N2 real parameters

WµVidīL�µdL ! WµVidīL�µ
�
ei✓dL

�
= Wµ(Vide

i✓) (̄iL�µdL)

d ! dei✓

       can be absorbed in the redefinition of       without changing the physics. Thus 
phase of any individual CMK matrix has no physical meaning. What really count is 
the relative phase. 

ei✓ Vid

Number of phases which has no physical meaning are (2N-1)
Number of independent parameters in VNXN are

Orthogonal matrix gives N^2-N-N(N-1)/2=N(N-1)/2  mixing angels

Then the number of phase are 

(N � 1)2 � N(N � 1)

2
=

(N � 1)(N � 2)

2

N2 � (2N � 1) = (N � 1)2

= 0   for N=1 and 2  
   1   for N=3
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Feynman Rules
• Depending on the order of the interaction,                 or               , the CKM  
   matrix enters as either         or

•Writing the interaction in terms of the WEAK eigenstates

For                  the weak current is:    

Giving the                  weak current: 

•Giving the                  weak current: 

In terms of the mass eigenstates 

NOTE: u is the 
adjoint spinor not  
the anti-up quark
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Hence,  when the charge           quark enters as the adjoint spinor, the complex  
   conjugate of the CKM matrix is used

★ The vertex factor the following diagrams:

★ Whereas, the vertex factor for:

is

is
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★ Experimentally determine

★ Assuming unitarity of CKM matrix, e.g.  
     gives:

Cabibbo matrix 

★ However, the off-diagonal elements of the CKM matrix are relatively small.  
• Weak interaction largest  between quarks of the same generation.   
• Coupling between first and third generation quarks is very small !

★ Currently little direct experimental information on 

★ NOTE: within the SM, the charged current,          ,  weak interaction: 
① Provides the only way to change flavour ! 
② only way to change from one generation of quarks or leptons to another !

Near diagonal – very 
different from PMNS

★ Just as for the PMNS matrix – the CKM matrix allows CP violation in the SM 
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Determination of the CKM Matrix
•The experimental determination of the CKM matrix elements comes mainly from 
      measurements of leptonic decays (the leptonic part is well understood).  

• It is easy to produce/observe meson decays, however theoretical uncertainties 
      associated with the decays of bound states often limits the precision  

• Contrast this with the measurements of the PMNS matrix, where there are few 
    theoretical uncertainties and the experimental difficulties in dealing with neutrinos 
    limits the precision.

|Vud| from nuclear beta decay❶

Super-allowed 0+¦0+  beta decays are 
relatively free from theoretical uncertainties
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|Vus| from semi-leptonic kaon decays❷

❸ |Vcd| from neutrino scattering

Look for opposite charge di-muon events in          scattering from production and 
  decay of a                  meson        

…

opposite sign 
µµ pair

Measured in various 
collider experiments 
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|Vcs| from semi-leptonic charmed meson decays❹
e.g.

•Precision limited by theoretical uncertainties

experimental error theory uncertainty

|Vcb| from semi-leptonic B hadron decays❺

e.g.

|Vub| from semi-leptonic B hadron decays❻
e.g.
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★ Assuming unitarity of CKM matrix, e.g.  
     gives:

Near diagonal – very 
different from PMNS

2

~

tb

W
P

P

t b

W

Measuring  

tσ
assume SM CKM element 

tbV

14 12. CKM quark-mixing matrix

A complication is that the ratio of the interfering amplitudes is very small,
rDπ = A(B0 → D+π−)/A(B0 → D+π−) = O(0.01) (and similarly for rD∗π and rDρ),
and therefore it has not been possible to measure it. To obtain 2β + γ, SU(3) flavor
symmetry and dynamical assumptions have been used to relate A(B0 → D−π+) to
A(B0 → D−

s π+), so this measurement is not model-independent at present. Combining
the D±π∓, D∗±π∓ and D±ρ∓ measurements [127] gives sin(2β + γ) > 0.68 at 68%
CL [105], consistent with the previously discussed results for β and γ. The amplitude
ratio is much larger in the analogous B0

s → D±
s K∓ decays, which will allow a model-

independently extraction of γ − 2βs [128] at LHCb [129] (here βs = arg(−VtsV ∗
tb/VcsV ∗

cb)
is related to the phase of Bs mixing).

12.4. Global fit in the Standard Model

Using the independently measured CKM elements mentioned in the previous sections,
the unitarity of the CKM matrix can be checked. We obtain |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 (1st row), |Vcd|2 + |Vcs|2 + |Vcb|2 = 1.024 ± 0.032 (2nd row), |Vud|2 +
|Vcd|2+|Vtd|2 = 1.000±0.004 (1st column), and |Vus|2+|Vcs|2+|Vts|2 = 1.025±0.032 (2nd
column), respectively. The uncertainties in the second row and column are dominated
by that of |Vcs|. For the second row, a slightly better check is obtained from the
measurement of

∑
u,c,d,s,b |Vij |2 in Sec. 12.2.4 minus the sum in the first row above:

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.002 ± 0.027. These provide strong tests of the unitarity of the
CKM matrix. With the significantly improved direct determination of |Vtb|, the unitarity
checks for the third row and column have also become fairly precise, leaving decreasing
room for mixing with other states. The sum of the three angles of the unitarity triangle,
α + β + γ = (175 ± 9)◦, is also consistent with the SM expectation.

The CKM matrix elements can be most precisely determined using a global fit to
all available measurements and imposing the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,105] and Ref. 130 (which develops [131,132] further) use
frequentist statistics, while UTfit [112,133] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (12.4) gives

λ = 0.22537 ± 0.00061 , A = 0.814+0.023
−0.024 ,

ρ̄ = 0.117 ± 0.021 , η̄ = 0.353 ± 0.013 . (12.26)

These values are obtained using the method of Refs. [6,105]. Using the prescription
of Refs. [112,133] gives λ = 0.2255 ± 0.0006, A = 0.818 ± 0.015, ρ̄ = 0.124 ± 0.024,
η̄ = 0.354 ± 0.015 [134]. The fit results for the magnitudes of all nine CKM elements are

VCKM =

⎛

⎝
0.97427 ± 0.00014 0.22536 ± 0.00061 0.00355 ± 0.00015
0.22522 ± 0.00061 0.97343 ± 0.00015 0.0414 ± 0.0012
0.00886+0.00033

−0.00032 0.0405+0.0011
−0.0012 0.99914 ± 0.00005

⎞

⎠ , (12.27)

August 29, 2014 13:59

PDG 2014
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The Neutral Kaon System
Neutral Kaons are produced copiously in  
    strong interactions, e.g. 

290 8 The Neutral Kaon System

There is a subtle distinction between these two cases: according to the present state
of experimental physics the baryon number is an absolutely conserved quantity of
nature;2 therefore a neutron can never transform into an antineutron. On the other
hand, we know that isospin and strangeness conservation are violated by the weak
interaction. Thus, despite the fact that K0 and K̄0 are different particles at the level
of the strong interaction, there is no reason why they should not be able to transform
into each other under the influence of the weak interaction. We see that this is in
fact possible, because K0 as well as K̄0 may decay weakly into the two-pion state
(π+π−). Therefore it must be possible for the K0 to transform into its antiparticle
via the intermediate system π+π− (see Fig. 8.2). It is easy to decompose the process
K0 ↔ K̄0 into reactions of the constituent quarks of the particles and to describe it in
the framework of the Salam–Weinberg theory (Fig. 8.3), or more schematically by the
graph shown in Fig. 8.4.

Fig. 8.2. The transformation
of a K0 into a K̄0 via an in-
termediate π†π− pair

Fig. 8.3. The transformation
in microscopic view. The
quark content of the meson is
shown

Fig. 8.4. Schematic represen-
tation of the K0–K̄0 trans-
formation in the microscopic
quark picture

In the Feynman–Stückelberg interpretation an antiparticle is simply a particle
moving backwards in time. On the other hand, the CPT theorem3 states that every
quantum-mechanical state is transformed into itself under the combined action of the
operations of charge conjugation and inversion of space and time. Hence the trans-
formation ĈP̂ , that is charge conjugation and simultaneous space inversion, may be
considered instead of time reversal. The transition amplitude ⟨π+π−|S|K0⟩ becomes
the amplitude

−⟨π+π−|ĈP̂ Ŝ (ĈP̂ )−1|K̄0⟩

under the operation ĈP̂ , because only π+ and π− exchange their roles on the left–
hand side (the minus sign is connected with the internal parity (−) of the kaon (see
Exercise 8.1)).

2 For some time it has been considered theoretically that baryon-number conservation may be vio-
lated in some processes at a very low level. We shall discuss this in Chap. 9. Because of the known
lower limit of the lifetime of the proton, τp > 1039 s, the effective coupling constant for such processes
must be at least 24 orders of magnitude smaller than the Fermi constant of the weak interaction.
3 G. Lüders: Danske Vid. Selskab Mat. Fys. Medd. 28, 5 (1954); see also W. Greiner and J. Rein-
hardt: Quantum Electrodynamics, 2nd ed. (Springer, Berlin, Heidelberg, 1994).

• Neutral Kaons decay via the weak interaction 

• The Weak Interaction also allows mixing of neutral kaons via “box diagrams” 



• This allows transitions between the strong eigenstates states  
• Consequently, the neutral kaons propagate as eigenstates of  the overall strong  
    + weak interaction (Appendix II); i.e. as linear combinations of
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The Neutral Kaon System
Neutral Kaons are produced copiously in  
    strong interactions, e.g. 

• Neutral Kaons decay via the weak interaction 
• The Weak Interaction also allows mixing of neutral kaons via “box diagrams” 

d

s d

s d

s d

s

•These neutral kaon states are called the “K-short”          and the “K-long”  
•These states have approximately the same mass   

•But very different lifetimes:   



22

CP Eigenstates
★The         and         are closely related to eigenstates of the combined charge 
     conjugation and parity operators: CP
•The strong eigenstates                 and                 have   

•The charge conjugation operator changes particle into anti-particle and vice versa   

similarly The + sign is purely conventional, could  
have used a - with no physical consequences

•Consequently

i.e. neither         or          are eigenstates of CP 
•Form CP eigenstates from linear combinations:

with
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Decays of CP Eigenstates
•Neutral kaons often decay to pions (the lightest hadrons) 
•The kaon masses are approximately 498 MeV and the pion masses are  
   approximately 140 MeV. Hence neutral kaons can decay to either 2 or 3 pions  
Decays to Two Pions: 

•Conservation of angular momentum    ª 

•The                                      is an eigenstate of  

as before
★Here the C and P operations have the identical effect

Hence the combined effect of 
is to leave the system unchanged

Neutral kaon decays to two pions occur in CP even (i.e. +1) eigenstates 
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Decays to Three Pions: 

•Conservation of angular momentum:
Remember L is 
magnitude of angular 
momentum vector

•Again 

Hence:

•The small amount of energy available in the decay,  
   means that the L>0 decays are strongly suppressed by the angular momentum   
   barrier effects (recall QM tunnelling in alpha decay)  

Neutral kaon decays to three pions occur in CP odd (i.e. -1) eigenstates 
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★ If CP were conserved in the Weak decays of neutral kaons, would expect decays 
    to pions to occur from states of definite CP (i.e. the CP eigenstates        ,      )

CP EVEN

CP ODD

★Expect lifetimes of CP eigenstates to be very different 
• For two pion decay energy available: 
• For three pion decay energy available: 

★Expect decays to two pions to be more rapid than decays to three pions due to 
    increased phase space
★This is exactly what is observed: a short-lived state “K-short” which decays to 
    (mainly) to two pions and a long-lived state “K-long” which decays to three pions
★ In the absence of CP violation we can identify 

with decays:

with decays:



• If CP is conserved in the decay, need to  
   express        in terms of         and    

26

•Consider the decays of a beam of   

       a rapidly decaying CP-even component and  a long-lived CP-odd component  
•Therefore, expect to see predominantly two-pion decays near start of beam 
    and predominantly three pion decays further downstream  

Distance from K0 production

Lo
g 

In
te

ns
ity

At large distance left  
with pure KL beam

Neutral Kaon Decays to pions

•The decays to pions occur in states of definite CP 

•Hence from the point of view of decays to pions,  a           beam is a linear 
   combination of CP eigenstates:   
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Suppose at time t=0 make a beam of pure  

Put in the time dependence of wave-function KS mass:
KS decay rate:

NOTE the term                  ensures the KS probability density decays exponentially 

Hence wave-function evolves as 

Writing  and

The decay rate to two pions for a state which was produced as        :            

which is as anticipated, i.e. decays of the short lifetime component KS

i.e.

★To see how this works algebraically:
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Neutral Kaon Decays to Leptons
Neutral kaons can also decay to leptons

   Note: the final states are not CP eigenstates  
   which is why we express these decays in terms of 

 Neutral kaons propagate as combined eigenstates of weak + strong 
     interaction i.e. the                . The main decay modes/branching fractions are:  

Leptonic decays are more likely for the K-long because the three pion decay 
   modes have a lower decay rate than the two pion modes of the K-short
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   The “semi-leptonic” decay rate to                   occurs from the         state. Hence 
   to calculate the expected decay rate,  need to know the        component of the  
    wave-function. For example, for a beam which was initially        we have (1) 

Writing               in terms of

•The          intensity  (i.e.         fraction):  

Because                             a state that was initially a        evolves  
   with time into  a  mixture of         and - “strangeness oscillations”

Similarly   

(2)

(3)

Strangeness Oscillations  (neglecting CP violation)
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Using the identity

Reminiscent of neutrino oscillations ! Only this time we have decaying states. 

Oscillations between neutral kaon states with frequency given by the 
     mass splitting  

Using equations (2) and (3):   

(4)

(5)
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 Experimentally we find:

   i.e. the K-long mass is greater than the K-short by 1 part in 1016

• The mass difference corresponds to an oscillation period of

• The oscillation period is relatively long compared to the KS lifetime and  
     consequently, do not observe very pronounced oscillations 

After a few KS lifetimes, left with a pure KL  
beam which is half K0 and half K0

and
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★ Strangeness oscillations can be studied by looking at semi-leptonic decays

★ The charge of the observed pion (or lepton) tags the decay as from either a 
     or          because

NOT ALLOWED
but

So for an initial          beam, observe the decays to both charge combinations:  

which provides a way of measuring strangeness oscillations
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The CPLEAR Experiment

•CERN : 1990-1996
Used a low energy anti-proton beam

• Low energy, so particles produced  
    almost at rest

Neutral kaons produced in reactions

• Observe production process and 
    decay in the same detector

• Charge of                 in the production 
    process tags the initial neutral kaon 
    as  either        or

• Charge of decay products tags the decay as either as being either          or 
• Provides a direct probe of strangeness oscillations
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An example of a CPLEAR event

Production:

Decay: Mixing

For each event know initial wave-function, 
    e.g. here:
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Can measure decay rates as a function of time for all combinations:
e.g.

From equations (4), (5) and similar relations: 

where              is some overall normalisation factor  

Express measurements as an “asymmetry” to remove dependence on 
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Using the above expressions for          etc., obtain   

★ Points show the data

★ The line shows the theoretical 
     prediction for the value of  Δm  
     most consistent with the CPLEAR 
     data:

•The sign of Δm is not determined here but is known from other experiments 
• When the CPLEAR results are combined with experiments at FermiLab obtain: 

A. Angelopoulos et al., Eur. Phys. J. C22 (2001) 55
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CP Violation in the Kaon System
★ So far we have ignored CP violation in the neutral kaon system 
★ Identified the K-short as the CP-even state and the K-long as the CP-odd state

with decays:

with decays:

CP = +1

CP = -1

★ At a long distance from the production point a beam of neutral kaons will 
     be 100% K-long  (the K-short component will have decayed away). Hence, 
     if CP is conserved, would expect to see only three-pion decays.
★ In 1964  Fitch & Cronin (joint Nobel prize) observed 45                            decays 
    in a sample of 22700 kaon decays a long distance from the production point

Weak interactions violate CP 

CP is violated in hadronic weak interactions,  but only at the level of 2 parts in 1000

KL to pion BRs:
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★Two possible explanations of CP violation in the kaon system:
i) The KS and KL do not correspond exactly to the CP eigenstates K1 and K2

with
•In this case the observation of                     is accounted for by: 

CP = +1

CP = -1
ii) and/or CP is violated in the decay 

CP = -1

CP = -1

CP = +1

★ Experimentally both known to contribute to the mechanism for CP violation in the  
    kaon  system but  i) dominates:

Parameterised by

NA48 (CERN) 
KTeV (FermiLab)

★ The dominant mechanism is discussed in examinable Appendix III
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CP Violation in Semi-leptonic decays
★  If observe a neutral kaon beam a long time after production (i.e. a large distances) 
     it will consist of a pure KL component

★  Results in  a small difference in decay rates:  the decay to                  is  
      0.7 % more likely than the decay to 

★  Decays to                      must come from the          component, and decays to 
                        must come from the         component

•This difference has been observed and thus provides the first direct  
    evidence for an absolute difference between matter and anti-matter.

★ It also provides an unambiguous definition of matter which could, for example,  
     be transmitted to aliens in a distant galaxy 

 “The electrons in our atoms have the same charge as those emitted 
   least  often in the decays of the long-lived neutral kaon”
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d

s d

s

CP Violation and the CKM Matrix
★ How can we explain                                                            in terms of the CKM matrix ?

★ Consider the box diagrams responsible for mixing, i.e.

d

s d

s

where

★ Have to sum over all possible quark exchanges in the box. For simplicity 
     consider just one diagram

d

s d

s
c t

A constant related 
to integrating over 
virtual momenta 
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d
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s
c t

s

d s

d
c t

★ Compare the equivalent box diagrams for                     and   

★ Therefore difference in rates   

★ Hence the rates can only be different if the CKM matrix has imaginary component   

★ In the kaon system we can show

★ A more formal derivation is given in Appendix IV   

 Shows that CP violation is related to the imaginary parts of the CKM matrix
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Summary
★ The weak interactions of quarks are described by the CKM matrix 

★ Similar structure to the lepton sector, although unlike the PMNS matrix, 

       the CKM matrix is nearly diagonal 

★ CP violation enters through via a complex phase in the CKM matrix 

★ A great deal of experimental evidence for CP violation in the weak 

       interactions of quarks 

★ CP violation is needed to explain matter – anti-matter asymmetry in the 

       Universe 

★ HOWEVER, CP violation in the SM is not sufficient to explain  

       the matter – anti-matter asymmetry. There is probably another mechanism.
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Appendix II: Particle –  Anti-Particle Mixing

•The wave-function for a single particle with lifetime                    evolves with time as:

   which gives the appropriate exponential decay of   

•The wave-function satisfies the time-dependent wave equation: 

•For a bound state such as a           the mass term includes the “mass” from  
   the weak interaction “potential”               

d

s
c t

d

s

The third term is the 2nd order 
term in the perturbation expansion 
corresponding to box diagrams 
resulting in   

(A1)

Sum over 
intermediate 
states j
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★ Because there are also diagrams which allow                    mixing need to  
    consider the time evolution of a mixed stated

• The total decay rate is the sum over all possible decays

Density of final states

★ The time dependent wave-equation of (A1) becomes

the diagonal terms are as before, and the off-diagonal terms are due to mixing.

d

s d

s
c t

(A3)

(A2)
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•The off-diagonal decay terms include the effects of interference between  
   decays to a common final state 

•In terms of the time dependent coefficients for the kaon states, (A3) becomes 

  where the Hamiltonian can be written:

•Both the mass and decay matrices represent observable quantities and are 
   Hermitian 

•Furthermore, if CPT is conserved then the masses and decay rates of the  
   and        are identical:
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•Hence the time evolution of the system can be written:

(A4)

•To solve the coupled differential equations for a(t) and b(t), first  find the   
    eigenstates of the Hamiltonian (the KL and KS)  and then transform into 
    this basis. The eigenvalue equation is:

Which has non-trivial solutions for

with eigenvalues

(A5)

•The eigenstates can be obtained by substituting back into (A5)
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★ Define

★ Hence the normalised eigenstates are

★ Note, in the limit where                     are real, the eigenstates correspond to the 
    CP eigenstates K1 and K2. Hence we can identify the general eigenstates as 
     as the long and short lived neutral kaons:
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★ Substituting these states back into (A2): 

   with

★ Now consider the time evolution of   

★ Which can be evaluated using (A4) for the time evolution of a(t) and b(t): 



49

with

and

★ Hence: 



50

★ Following the same procedure obtain:  

with

and

★ Hence in terms of the KL and KS basis the states propagate as independent  
    particles with definite masses and lifetimes (the mass eigenstates). The time 
    evolution of the neutral kaon system can be written 

★ In matrix notation we have  

★ Solving we obtain  

where AL and AS are constants
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Appendix III: CP Violation : ππ decays
★ Consider the development of the                     system now including CP violation 
★ Repeat previous derivation using 

•Writing the CP eigenstates in terms of  

•Inverting these expressions obtain  

•Hence a state that was produced as a          evolves with time as:   

   where as before and
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•If we are considering the decay rate to ππ need to express the wave-function 
     in terms of the CP eigenstates (remember we are neglecting CP violation 
      in the decay)

•Two pion decays occur with CP = +1 and therefore arise from decay of the 
    CP = +1 kaon eigenstate, i.e. 

•Since        

•Now evaluate the                             term again using         

CP Eigenstates



53

•Writing 

•Putting this together we obtain: 

Short lifetime 
component 
KS¦ππ

CP violating long  
lifetime component 
KL¦ππ

Interference term

•In exactly the same manner obtain for a beam which was produced as 

Interference term changes sign
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CPLEAR data

★ At large proper times only the long lifetime component remains :  

i.e. CP violating                     decays   
★ Since CPLEAR can identify whether a          or           was produced, able to 
     measure                             and    

Prediction with CP violation

± interference term
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★The CPLEAR data shown previously can be used to measure  
•Define the asymmetry: 

•Using expressions on page 443

                      i.e. two small quantities and 
can safely be neglected
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Best fit to the data:

A.Apostolakis et al., Eur. Phys. J. C18 (2000) 41
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★ The K-long and K-short wave-functions depend on 

with

★ If                                                    then the K-long and K-short correspond to 
     the CP eigenstates K1 and K2 
•CP violation is therefore associated with imaginary off-diagonal mass 
    and decay elements for the neutral kaon system 
•Experimentally, CP violation is small and  

•Define:  

Appendix IV: CP Violation via Mixing

★ A full description of the SM origin of CP violation in the kaon system is beyond 
    the level of this course, nevertheless, the relation to the box diagrams is 
    illustrated below
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d

s d

s
c t

•Consider the mixing term          which arises from the sum over all possible 
   intermediate states in the mixing box diagrams

e.g.

•Therefore it can be seen that, in the Standard Model, CP violation is associated  
   with the imaginary components of the CKM matrix 

•It can be shown that mixing leads to CP violation with 

•The differences in masses of the mass eigenstates can be shown to be:

where        and       are the quarks in the loops and        is a constant 
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★ If epsilon is non-zero we have CP violation in the neutral kaon system

Writing and 

gives 

★ From which we can find an expression for 

★ Experimentally we know      is small, hence        is small

•In terms of the small parameter   
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Appendix V: Time Reversal Violation
•Previously, equations (4) and (5), obtained expressions for strangeness  
    oscillations in the absence of CP violation, e.g. 

•This analysis can be extended to include the effects of CP violation to give the 
    following rates

★ Including the effects of CP violation find that 

Violation of time reversal symmetry ! 

★ No surprise, as CPT is conserved, CP violation implies T violation 


