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Recap

% Working towards a proper calculation of decay and scattering processes

Initially concentrate on:

ce'e”— utu-
° e—q — e_q

A Lectures 3-4 covered the relativistic calculation of partlcle decay rates
and cross sections M2

O X (phase space)
flux

A Lecture 5 covered relativistic treatment of spin-half particles
Dirac Equation

A This lecture concentrates on the Lorentz Invariant Matrix Element

* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED



Interaction by Particle Exchange

» Calculate transition rates from Fermi’s Golden Rule
Ty = 27|T7:*p (Ey)
where Tﬁ is perturbation expansion for the Transition Matrix Element

(FIVI) Vi)
(fIVIy+ ) E—E, 4+
J#i

 For particle scattering, the first two terms in the perturbation series
can be viewed as:

“scattering in

g “scattering via an
a potential”

intermediate state”

 “Classical picture” — particles act as sources for fields which give
rise a potential in which other particles scatter — “action at a distance”

« “Quantum Field Theory picture” — forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles 3



- Consider the particle interaction ¢ +b — ¢ +d which occurs
via an intermediate state corresponding to the exchange of particle x

* One possible space-time picture of this process is:

ot
| a~_V, —C Initial statei: a+Db
& \J</ Final state f: ¢+d
X Intermediate state j :c +b+x
v * This time-ordered diagram corresponds to
b/ f] \d 13 L ” .
, a “emitting” x and then b absorbing x
i i f '
time

* The corresponding term in the perturbation expansion is:

r o SIVIDGIVED
4 Ei—E;
Tab (d|V]x+b){c +x|V|a)

(Ea L2 Eb) - (E(‘ + E.\' R Eb)

b
‘ Tja, refers to the time-ordering where @ emits X before b absorbs it



- Need an expression for(c + x|V |a) in

non-invariant matrix element7¥; Sa

- Ultimately aiming to obtain Lorentz Invariant ME X

* Recall T7y; is related to the invariant matrix element by

Tfi = [ [(2Ex)~"/°M;;
k
where k runs over all particles in the matrix element
M(a—>c+.\')
(2E,2E.2E,)\/?

- Here we have

(c+x|V|a) =

M(a—c+x) is the “Lorentz Invariant” matrix element fora - ¢+ x

* The simplest Lorentz Invariant quantity is a scalar, in this case

8a
+x|V]a) =
(C Xl |(l> (2E(,2E(~2E,\-)|/2

8a is a measure of the strength of the interactiona - c+ x

Note : the matrix element is only LIl in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.



. 8h
Similarl d\Vix+b) =
y ( | |X+ > (2E[)2E(12E_\-)|/2 )C\
(d|V|x+b){c + x|V|a) b S
(Eh‘FE%)"(E}4'E}4‘E%)

| ' I _ 8a8b
2E; (2E.2Ep2E.2E;)'/? (E,—E.—Ey)

= o= b
Giving T/",

* The “Lorentz Invariant” matrix element for the entire process is
M% = (2E.2Ex2E.2E)'*TF
I Sa8b

2E} (Eh"E}“E&)

Note:

¢ Mf,b refers to the time-ordering where a emits x before b absorbs it
It is not Lorentz invariant, order of events in time depends on frame

¢ Momentum is conserved at each interaction vertex but not energy

E; # E;
: e 6 ” 2 __ =22 2
¢ Particle x is “on-mass shell” i.e. E{ = p; +m



% But need to consider also the other time ordering for the process

wt - This time-ordered diagram corresponds to
G| A~ = e L~
0. \7/ b “emitting” x and then a absorbing x
X * X is the anti-particle of x e.qg.
b//\\d e- Ve e- Ve
. . — +
i j f W
time Vu u| [Vu u-

- The Lorentz invariant matrix element for this time ordering is:

I . 8a8b
ZE.\' (Eb — Ed _ E\)

* Sum over matrix elements corresponding to same final state:

Mj = MF+M}

ba
M,

8a8b ( l N ! >
2E\- Ea - E(‘ o E\‘ Eb o Ed o E\'
| ) Energy conservation:

_ 8a8b ( 1
2E_‘- Ea - E(' - E,\' Ea o E(' + E.\'

(Ea * Eb — E(- f Ed)



8a8b 2E,

2E.\' (Ea o E(')2 o E\2
8a8b

(Ea - EC)z - E\2

- Which gives M s;

* From 1sttime ordering E? = j5? 4+ m? = (p, — p.)> +m?>

= 8a8b
giving M; = E——
4 (Ea— Ec)2 —(Pa— P(‘)2 - ’".%
_ Sa8b
(pa — 1)(‘)2 - m.%‘
8a8b
> Mf, = qz — m2
X

° After summing over all possible time orderings, My; is (as anticipated)
Lorentz invariant. This is a remarkable result — the sum over all time
orderings gives a frame independent matrix element.

- Exactly the same result would have been obtained by considering the
annihilation process



Feynman Diagrams

* The sum over all possible time-orderings is represented by a FEYNMAN diagram

) b
3| a c 3| a c a C
& B
X o —
- P = .
b : b : b d
time time
a _ ¢ InaFeynman diagram:
¢ the LHS represents the initial state
X ¢ the RHS is the final state
¢ everything in between is “how the interaction
b d happened”

It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

® The factor 1/ (q2 - m_%) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange



* The matrix element: My; = Sabb depends on:

q> —m?

& The fundamental strength of the interaction at the two vertices ga, &b

& The four-momentum, ¢ , carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.

Note 612 can be either positive or negative.
Here g=p)—p3=ps—pr=t

q° = (E—E)*—(p1—p3)
g2 <0 termed “space-like”

Here g=p1+p2=p3+ps=s
InCoM: p; =(E,p); p»=(E,~p)
q> = (E+E)*—(P—p)* =4E?

g>>0 termed “time-like”

“t-channel”

For elastic scattering: p1 = (E,p1); p3 = (E,p3)

“s-channel”
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Virtual Particles

“Time-ordered QM” Feynman diagram
7 _|_ @ X — . M — 8a8b
b ; =P
— b d '
t1me time
— __ — __
o —
‘Momentum conserved at vertices ‘Momentum AND energy conserved
*Energy not conserved at vertices at interaction vertices
‘Exchanged particle “on mass shell” °*Exchanged particle “off mass shell”
- 1D 5 F2_|-'_|2: 2#’,12
— |Px|” = m: “x — |Px q- 7 my

VIRTUAL PARTICLE

-Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source
particles: SN
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Aside: V(r) from Particle Exchange

% Can view the scattering of an electron by a proton at rest in two ways:
- Interaction by particle exchange in 2"d order perturbation theory.

a c
8a8b
q* — m?

Myi =

b d

- Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

rise to a potential V(r) M = (ys|V(r)|y:)

/ / Obtain same expression for My; using

@ e YUKAWA

V(r) V(r) = 8a8b - potential

% In this way can relate potential and forces to the particle exchange picture

% However, scattering from a fixed potential V(r) is not a relativistic
invariant view 12



Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

- The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution

p—pP— q/_l‘; E—E—-q¢ |(here q = charge)

InQM: p=—iV; E=id/ot

Therefore make substitution: idy, — idy, —gAy
where Ay =(¢,-A); Iy =(d/dt,+V)

* The Dirac equation:
YWouy+imy =0 w Yo, y+igytAyy+imy =0

(Xi) = i}")aa—l;, +i7.§w—q}"‘Apl/f—mw=O
13



.00 A e
17"3—‘;’=Y"Hw = my—iy.Vy+qy'Ayy

X : Hy = (y0171—iy07.V)w+q\}'0}’”Au}U
- ~ J
Combined rest  Potential
mass + K.E. energy

- We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

1 - (note the A, term is
Vb = 47’1 Ay just:  q¥'Y’A0=q¢ )

- The final complication is that we have to account for the photon

polarization states. (A )

i(p.r—Er)

e.g. for a real photon propagatlng in the z direction we have two
orthogonal transverse polarization states

0 0
2) 0 Could equally have

(1) e = 1 chosen circularly
0 0 polarized states
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- Previously with the example of a simple spin-less interaction we had:

/\a\}/‘:

M= (Y|V|Ya) 5——
q> —m? X
o \/f/\

—- P P3

8a 8b b d e L e"
% In QED we could again go through the procedure

of summing the time-orderings using Dirac 25 P4

spinors and the expression for V. If we were - y _
T

to do this, remembering to sum over all photon
polarizations, we would obtain:

. en(e))”
M = [u}(p3)ge P! ue(p1)] Y -+ qzv (1} (p1)qY’ 7 uz(p2)]
N / &A J ~ —
N Y g

Massless photon propagator |||nteraction of T~

Interaction of e- - S
summing over polarizations with photon

with photon

All the physics of QED is in the above expression ! .



- The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarization states

1 0 0 0
0_ [0 |1 2)_ (0 3)_ [0
e0) — 0 ell) = 0 el2) — l eP) = |4
0 0 0 |
: . AfpAyx _ This i t obvi — for th
and gives: ;81!1 (&v)" = —8uv molnt:nrtl?usc; t\:I?euist onc;'lﬁ'us;a

and the invariant matrix element becomes:

M = [llz;(1)3)q(,)’0}’ulle(1)])] j;v [“:(174)%};)7"‘&(1’2)]

* Using the definition of the adjoint spinor v = qﬂ‘y‘)

M = [t.(p3)qe Y ue(p1))

9 e po)ger )

% This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that #;Y*u> transforms as a four vector. Writing

JH =T.(p3) P ue(pr)  Jr =Uz(pa)Y uc(p2)
. Je-Jt
M = —qeqz _qz showing that M is Lorentz Invariant o



Feynman Rules for QED

* It should be remembered that the expression

M = [u.(p3)ge V" ue(p1)] gfv [t (pa)gY uc(p2)]

—_

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual
photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary — can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

. Propagator factor for each internal line
(i.e. each internal virtual particle)

et Y U

& Dirac Spinor for each external line

e - (i.e. each real incoming or outgoing particle)

& Vertex factor for each vertex
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Basic Rules for QED

& External Lines

~ incoming particle u(p) —>
spin 1/2 outgoing part-lcle. i(p) —>
incoming antiparticle v(p) —<—e
| outgoing antiparticle v(p) —<—
_ " incoming photon e (p) AN
spin 1 i outgoing photon g“(p)* AN

& Internal Lines (propagators) .
ISuv w v
spin 1 photon - 7 NN\S
spin1/2  fermion i(rqut+m) .

& Vertex Factors
spin 1/2  fermion (charge -Je|) ieY"

& Matrix Element —IM = product of all factors

18



e, P e‘\)\,;/,/e— te(p3)liey"]ue(p1)
—1
T
7

T ' T tr(pa)liey"us(p2)

—1
M = (1 e (1)~ i e )

- Which is the same expression as we obtained previously

ed. et P2 w*

_iM = [5(pa)ier"u(py) ‘;i““ [@(p3)iey v(ps)]

Note: ¢ At each vertex the adjoint spinor is written first
¢ Each vertex has a different index
¢ The guv of the propagator connects the indices at the vertices -



Summary

% Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

8a8b

M..
/! q> —m?

% Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—iM = [u(p3)iey*u(p)] —;gzuv [i(pa)iey u(p2)]

% We now have all the elements to perform proper calculations in QED !
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