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QEDiT&E

& How to calculate a cross section using QED (e.g. e*fe~— u‘u-):

® Draw all possible Feynman Diagrams
For ete~ —u*u~ there is just one lowest order diagram

Y
>\/\/VV< M < e 2 o Olem
e w-

+ many second order diagrams + ...
. Y Ut gt wr
e w- e- -

® For each diagram calculate the matrix element using Feynman rules



QEDit1 &

® Sum the individual matrix elements (i.e. sum the amplitudes)
My¢ =M, +M, +M3;+....

and then square |Mf,-|2 = (M +Ma+M3+....)(My +M5 +M3 +....)

==) this gives the full perturbation expansion in o,

Note: summing amplitudes therefore different diagrams for
the same final state can interfere either positively or negatively!

* For QED @, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.
et W et Y wr

v
>rvvvv< M? o< o2, >V\C>V\/< M? o< ot
e w- e w-
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@ Calculate decay rate/cross section using formulae introduced before

e.g. for a decay

P’ 2
= M i[2dQ
32712m2 / M;i

*For scattering in the centre-of-mass frame

do 1Pyl

dQ*  64n2s |p;|

M| (1)

*For scattering in lab. frame (neglecting mass of scattered particle)

do 1 [ E3\*, . o,
= M
dQ 6412 (ME,) M;i




Electron Positron Annihilation

* Consider the process: e*e~— u*u- p3 _~W-
* Work in C.o.M. frame (this is appropriate o) e/w'
for most e*e- colliders). e > ¢ D2 e’
Pl :(ana()ap) pz:(Eﬁ()’O’_p) M+ %

p3 = (E,pyr) ps = (E,—py)

* Only consider the lowest order Feynman diagram:
u+ ¢ Feynman rules give: :

—iM = [v(p2)iey" u(pi)] qz‘w [@(p3)iey"v(pa)]

_ NOTE: °Incoming anti-particle v
e Pi : * Incoming particle 7
» Adjoint spinor written first

e’ P2 Y P4

e In the C.o.M. frame have
do 1 |pyl
dQ 6472s |]—5,|

Mg|>  with  s=(p1+p2)*=(E+E)* =4E?



Electron and Muon Currents

* Here 612 = (pi -i-Pz)2 = § and matrix element

—iM = [V(p2)iey*u(py)] _;gzuv [i(p3)iey'v(pa)]

= M= ——guy [7(p2) Pu(p1)][(p3) 7" v(ps)

 We have introduced the four-vector current

M =yrty
which has same form as the two terms in [ ... ] in the matrix element
* The matrix element can be written in terms of the electron and muon currents

(J)* =v(p2)u(pr) and  (ju)" =u(p3)y'v(ps)

9
( . .
-, M= —?guV(Je)“(JM)V

e

M = _?jc“ju

* Matrix element is a four-vector scalar product — confirming it is Lorentz Invariant



Spin in e'e” Annihilation

 In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !

e_-><-°+ e_-“-p+ e_-;<-a+ e_-><-
RL RR LL LR

- Similarly there are four possible helicity combinations in the final state

* In total there are 16 combinations e.g. RL—-RR, RL—RL, ....

» To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

] |
(IM|?) = 1 Z M;|* = 1 (IMI.L—»I,I,|2 + My g+ )

spins

)
+

% i.e. need to evaluate: 62

- ?Je],u
for all 16 helicity combinations !

* Fortunately, in the limit E > m;, only 4 helicity combinations give non-zero
matrix elements — we will see that this is an important feature of QED/QCD



* In the C.o.M. frame in the limit £ > m y“_
pl - (E'O‘O’E)' I’2 - (E?OﬂO?_E) e_ P > < Ow e+

p3 = (E,Esin0,0,Ecos8); / P2
M+ P4

ps = (E,—sin6.,0,—Ecos8)

* Left- and right-handed helicity spinors (handout 3) for particles/anti-particles are:

C —5 P o \p| c
1P i E+m* E+m
o €.c Bl o PL_i¢
ur =N E|£l c up =N Eli)l § vi=N|"Em€ € Vi =N| Exm¢"S
E m +m -—$ C
Bl ie _ ol s i i
E+me S E+me C e OC e QS

- _ 0
where s=sInz; ¢=c0s5 and N =+/E+m

*In the limit £ > m these become:

C " | S C
Dl w0 P [ L0

ll] = \/E SC(. . lll = \/E C(:; : "T = \/E (_6; : ",1. = \/E 'Sec
se'? —ce'? ce'? se'?

* The initial-state electron can either be in a left- or right-handed helicity state
I 0

up(p1) = VE (1) cu(p)=vE|( ¢ |:
0 —1 8



- For the initial state positron (6 = Tr) can have either:

I 0
vi(p2) = VE _01 ; vi(p2) =VE (])
0 1

* Similarly for the final state W™ which has polar angle 0 and choosing o =0

; = 0=0"u"
ur(p3) =VE [ ¢ |su(p3)=vVE| § | 6
=
* And for the final state u* replacing 6 — 1 —0; ¢ — T obtain
¢ s using sin(%52) = cos g
vi(pa) =VE [ Zc |5 vi(pa) =VE | § |5 cos (%5%) = sin§
—5 —i i _
2

e” .
» Wish to calculate the matrix element M = —— j,. j,
S

* first consider the muon current j, for 4 possible helicity combinations

RR ,/vw RL ,/VW LR VM_ LL P>




The Muon Current

- Want to evaluate (j, )" =u(p3)y"v(p4) for all four helicity combinations

- For arbitrary spinorsy/, ¢ with it is straightforward to show that the
components of Yy*¢ are

V0 = Y0 =wio+ o+ ywios+ wids (3)
V' = Y0 =wioa o+ i+ e (4)
Vo = vY7r0=—i(yios— 303+ yi0r— i) (5)
VYo = vPr0=vwo:— w0+ yio — i (6)

- Consider the i, 1" combination using ¥ = up ¢ =v|

s C
with v, = vVE (—;') s Uy = vVE (2) .
—c s

= E(es—sc+ces—sc)=0
E(—c*+s*—c*+5*) =2E(s* —¢*) = —2Ecos 6
—iE(—c*—s* —c* —5%) = 2iE

E(cs+sc+cs+sc) =4Esc = 2Esin6

=|
—
A~ N S~
S
LS T {
— St Nt S
<
-—
—~~
=
4
N N N SN’

10



* Hence the four-vector muon current for the RL combination is
ur(p3)y'vi(ps) = 2E(0,—cos8,i,sin0)

* The results for the 4 helicity combinations (obtained in the same manner) are:

M,,‘}y“: i (p3)y'vi(ps) = 2E(0,—cos6,i,sin6) RL
e = () rvi(p) = (0,0,0,0) RR
o= =N (ps)y'vi(ps) = (0,0,0,0) LL
s e W T (p3)y'vi(ps) = 2E(0,—cosB,—i,sinf)| LR

% IN THE LIMIT E > m only two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.

* In the Weak interaction only one helicity combination contributes.

* The origin of this will be discussed in the last part of this lecture

« But as a consequence of the 16 possible helicity combinations only
four given non-zero matrix elements

11



Electron Positron Annihilation cont.

% For €'€~— u*unow only have to consider the 4 matrix elements:

T -
z z
- - N

e e- e Mg,

MRR e ’ > < , X
.z WL
.

M_
L ’
MLR e— - L 4 - + > < _ MLL

o e o &= et
/ /
M+ M+ X

* Previously we derived the muon currents for the allowed helicities:

= ugwt o w(pa)yYvi(ps) = 2E(0,—cos8,i,sin6)
2E(0,—cosB,—i,sin0)

+

= [T — o+ - v
+ e I u (p3)Y vi(pa)

w
w

* Now need to consider the electron current -’



The Electron Current

* The incoming electron and positron spinors (L and R helicities) are:

I 0 I 0
u[=\/E((])>;lll=\/E((l))§ "Iz\/E(-Pl);Vl:‘/EC))
0 ot 0 I

* The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =v(p2)Y*u(p1) (Ju)* =u(p3)y*v(ps)
» Taking the Hermitian conjugate of the muon current gives
@) v(pa)] = [u(ps) PP v(ps)]
= () PP u(ps) (AB) = B'A'
= v(p) P P u(p3) =7
= v(pa)" V¥ u(p3) PP =P

= v(p4)y‘”u(p3)

13



» Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

V| (pa) Y ur(p3)
vi(pa)Yu (p3)

1 (p3)Y'v (pa)]” =2E(0,—cos0,—i,sin6)
i, (p3)Y'vi(pa)]” =2E(0,—cos6,i,sin6)

To obtain the electron currents we simply need to set 6 = ()

e-

» d
| 4 N

= ot

) _e+

— .+_ .
€p€; .

— + .
ey ep -

v (p2)Y ur(p1)
vi(p2)Y'u (pr)

2E(0,—1,—i,0)
2E(0,—1,i,0)

14



Matrix Element Calculation

2
e
* We can now calculate M = —— j,. j, for the four possible helicity combinations.
s

e.d. the matrix element for eze; — g 1  which will denote | Mgy

1 o M_ ............................................................................................................................ Kooty
/- Here the first subscript refers to the helicity
e = e’ of the e~ and the second to the helicity of the u".
) Don’t need to specify other helicities due to :
u* “helicity conservation”, only certain chiral

- combinations are non-zero.

* Using: epe; : (Je )" =9 (p2)Y*uy(p1) = 2E(0,—1,—i,0)
dppy o (u)' =1 (p3)y'vi(pa) = 2E(0,—cos6,i,sin0)

2

gives Mep = —< [2E(0,—1,—i,0)].[2E(0,—cos8,i,sin6)]
A

= —¢*(14cos0)
— —47ta(]+c056) where a=€2/47t%l/137

15



o
o

Similarly \Mgg|* = My
Mge|* = |Mg|?

(4o )”(1+cosB)
(4ma)?(1 —cos )

(S

/'“— M; g /“_ M, /“_
y = e &= &= e &= , &=
e’ / et
w+* u
: A A

-1 cosO +1 -1 cos0 +1 | -1 cosB +1 -1 cosB +1

e*(1+cosB8)? | e*(1—cosB)? | e*(1—cosB)?| e*(1+cosh)?

« Assuming that the incoming electrons and positrons are unpolarized,
all 4 possible initial helicity states are equally likely.
16



*The cross section

Differential Cross Section

is obtained by averaging over the initial spin states

and summing over the final spin states:

l_Mm.l2 4 |Mur|2A \Mgg|? + |_Ml./.|2

do I I ,
0 - 1~ 6471,28,(IMRR|2 + |Mge|* + [Mpg|* + M, |)
4o 2 9 )
= (7567t3.s' (2(14cosB@)+2(1 —cosB)”)
do o’
m) | = —(]+4cos’6
dQ 4s ( ) >
Example: -1 cos0o +1
ete- Sutu- e Row L eit 51 11688 1641
Vs =29 GeV

pure QED, O(c3)

—— QED plus Z
contribution

Angular distribution becomes
slightly asymmetric in higher
order QED or when Z
contribution is included

17



* The total cross section is obtained by integrating over 0, ¢ using

+1

/(l +00329)dQ:27t/

(14+cos*0)dcos® = ——

167
3

giving the QED total cross-section for the process €'€~ = u*u-

5 dmo?
3s
10
% Lowest order cross section
calculation provides a good
description of the data ! .
=
©

This is an impressive result. From
first principles we have arrived at an
expression for the electron-positron
annihilation cross section which is
good to 1%

01

C"ﬂ' LN S r 1T r"] T r"l—r“T—r‘“r—r—T—“
—
-
b

R
v Jade

A AL J AL

O Mark J

A Pluto

0.01
0
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Spin Considerations (E > m)

% The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with S, = &1, i.e. in a total spin 1 state aligned along the

z axis: |1,+1) or|l,—1)

- Similarly the muon and anti-muon are produced in a total spin 1 state aligned
along an axis with polar anglef

e.g. Mg I1,1)e

/“ gt =D 11,1)

- Hence MRR o< (y|1,1) where ¥ corresponds to the spin state|1,1)g , of
the muon pair.

- To evaluate this need to express |1,1)g in terms of eigenstates cS;

* In the appendix (and also in IB QM) it is shown that:
11,1)g = 2(1 —cosB)[1,—1) + —=sinO[1,0) + 1 (1 +cos B)[1,+1)

I
/2 S

19



 Using the wave-function for a spin 1 state along an axis at angle 6

y=|1,1)g = 5(1—cos0) sin@[1,0) + 5(1+cos0)[1,+1)

)+ 75

can immediately understand the angular dependence

Mgr , 11,1)e
e _=-> . -
/” 5 = 1,1)  e==p
M‘F
IMr[? o< [(w|1,+1)]*> = 1(14+cosB)?




Lorentz Invariant form of Matrix Element

« Before concluding this discussion, note that the spin-averaged Matrix Element

derived above is written in terms of the muon angle in the C.o.M. frame.
1 -
(lei|2> = Z X (|MRR|2+|MRL|2+|MLR|2+|M£L|) p3 U
o P 9 o+

I 4 2

—e" (2(14+cosB@) +2(1 —cosB)" )25
242 )2 +2( e

= ¢*(14cos?9)

* The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

Inthe CoM. p; =(E,0,0,E) p,=(E,0,0,—E)
p3 = (E,Esin6,0,Ecos®) ps=(E,—Esin6,0,—Ecos0)

2 2

giving: pP1.-p2 =2E%, p1.p3=E*(1—cos8); pi.psa=E (1+cos0)

<

* Hence we can write

— 9 (p1-p3)* + (p1.pa)? §=264 (,Z_le)é
(p1-p2)? -

% Valid in any frame !

(IMyil*)




CHIRALITY

- The helicity eigenstates for a particle/anti-particle for £ > m are:

c -8 s c

_io i0 b _id
ulz\/E(M'(,);ul:\/E(C‘; );\’T=\/E((_‘;);\’l=\/E(Mi.)

se'? —ce'? ce'® se'?

where s = sing; s =cosg

* Define the matrix

0010

}’5_'}’0]?'}'3_ 0001} (01

=WTYTYY=11000 —(10)
0100

In the limit £ > m the helicity states are also eigenstates of }'5
}’Su-l = -I-u]-; }*Sul = —Uuj; '}'SVT = —V1; }"Svl - +vl
% In general, define the eigenstates of }’5 as LEFT and RIGHT HANDED CHIRAL
states ur; ur; VR, 3

i.e. }'SuR = +UR, }'5uL = —uy, '}’SVR = —VR, YSVL = +vL

* In the LIMIT E > m (and ONLY IN THIS LIMIT):

Up = uT; Uy = Lll; VR = vT; V), = vl 22



% This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

% Chirality is an import concept in the structure of QED, and any interaction of the
form 7yYu

* In general, the eigenstates of the chirality operator are:
Yur = +ug; YuL=—ur; Yvg=—vg; Vv =+vL
* Define the projection operators:

Pr=31(147); P.=%(1-7)

* The projection operators, project out the chiral eigenstates

Prup = up; Prup =0; Pur=0; Pu, =uy

Prvg =0; Prvp=vy; Povg=vg: Povp =0

- Note P projects out right-handed particle states and left-handed anti-particle states

 We can then write any spinor in terms of it left and right-handed
chiral components:
S

Y=vyr+yr=51+P)y+5(1-7)y N



Chirality in QED
* In QED the basic interaction between a fermion and photon is:
ieyyto
« Can decompose the spinors in terms of Left and Right-handed chiral components:
eyt = ie(Y,+Wr)Y (9r+¢1L)
= e(YrY QR+ YRV OL+ VW, Y Or+ VW, 7 OL)

» Using the properties of y5 (Q8 on examples sheet)
52 1. ST _ A5, Sl 5
() =1L r'=r; r=-7rr

it is straightforward to show (Q9 on examples sheet)

VYo =0, ¥ 7"9r=0
% Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

« For E > m , the chiral and helicity eigenstates are equivalent. This implies that
for E >> m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations

for the muon current were zero 04



Allowed QED Helicity Combinations

¢ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
¢ In this limit, the only non-zero helicity combinations in QED are:

Scattering: “Helicity conservation”

N #2 NI N -~ N &
R R L &L

Annihilation:

'

L R
\ >< ><
y 7 v v
R L

25



Summary

% In the centre-of-mass frame the e*e~ —u*u- differential cross-section is

do o’
d—gz' - 4_3(] +C0829)

NOTE: neglected masses of the muons, i.e. assumed E > my,

% In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

% CHIRAL states defined by chiral projection operators
l 5\. _ 1 5
Pr=3(14+7); P=3(1-7)

* Inlimit £ > m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR - RL - LR w LL -
2 7 2z "
e = = e = = e &= ,l &= e &= &=

26




Appendix : Spin 1 Rotation Matrices

» Consider the spin-1 state with spin +1 along the
axis defined by unit vector
, . 0
= (sin6,0,cos0) > Z

- Spin state is an eigenstate of /.S with eigenvalue +1
(7.5)|w) = +1|w) (A1)

. Expl:sgss in terms of linear combination of spin 1 states which are eigenstates

of O

” lv) =all,1)+B1,0) +7|1,-1)

with o> +Br+y =1
* (A1) becomes

(sinBS, +cos 0S,)(et|1,1) + B[1,0) + |1, —1

 Write S, in terms of ladder operators §, =

)= all,1)+B[1,007]1,—1) (A2)

(S++S5-)

where  S.[1,1)=0 S5,|1,0) =v2[1,1)  S.|]1,—1) =+/2|1,0)
S_|1,1) =v2|1,0)  S_|1,0) =v2|1,—-1) S_[1,—1)=0

Nl—' ~

27



 from which we find  Si|1,1) = 7'§||,0)

$:1,0) = S5 (|1, 1) +]1,-1))
S_\-“-,—l) - 75“30)

¢ p B Y
-ﬁ|l,0)+ﬁ|l,—l)+ﬁ|l,l)+ﬁ|l,0) +

acosO|1,1) —ycosO|1,—1) = a|1,1) + B|1,0)y|1,—-1)

- which gives sin 6 \
—— +acosf =«

P V2 o

sin
(a+7) =B

\/_

sin@

ﬁW—YCOQB ) 4

* (A2) becomes

sin 6

J

cusing a’+B%+7y>=1 the above equations yield
a=\/L§(l+cose) ﬁzésine y=%(l—cos€)

* hence

y = 5(1—cos0)|l, —l)+‘f9m9|l 0) + 5(1+cos@)[1,+1)

28



* The coefficients ¢¢,[3,7 are examples of what are known as quantum
mechanical rotation matrices. The express how angular momentum eigenstate

in a particular direction is expressed in terms of the eigenstates defined in a
different direction

dr{z’ Jm ( 9)

* For spin-1 (j = 1) we have just shown that

dj ,(6)

3(1+cos8) dj,(6)=J5sin®  d', (6)=j(1—cosb)

* For spin-1/2 it is straightforward to show

' )
() =cosg d’ '

d

(S Ll W

|
2
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