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QED计算
  How to calculate a cross section using QED  (e.g.  e+e– ¦ µ+µ– ): 

❶ Draw all possible Feynman Diagrams

e– µ–

e+ µ+
γ

For e+e– ¦µ+µ–  there is just one lowest order diagram 

   + many second order diagrams + … 

e– µ–

e+ µ+γ

e– µ–

e+ µ+
γ

+ +…

❷ For each diagram calculate the matrix element using Feynman rules
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QED计算
❸ Sum the individual matrix elements (i.e. sum the amplitudes) 

Note: summing amplitudes therefore different diagrams for  
          the same final state can interfere either positively or negatively!

this gives the full perturbation expansion in  

and then square 

• For QED                           the lowest order diagram dominates and  
   for most purposes it is sufficient to neglect higher order diagrams. 

e– µ–

e+ µ+
γ

e– µ–

e+ µ+γ
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❹ Calculate decay rate/cross section using formulae introduced before

•e.g. for a decay

•For scattering in the centre-of-mass frame

•For scattering in lab. frame (neglecting mass of scattered particle)

(1)

QED计算
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e– µ–

e+ µ+
γ

Electron Positron Annihilation

★Consider the process: e+e– ¦ µ+µ–

e– e+

µ+

µ–

• Work in C.o.M. frame (this is appropriate 
  for most e+e– colliders).

• Only consider the lowest order Feynman diagram:
⬧ Feynman rules give:

• In the C.o.M. frame have

with

NOTE: • Incoming anti-particle   
• Incoming particle  
• Adjoint spinor written first 
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Electron and Muon Currents 
• Here                                        and matrix element 

• The matrix element can be written in terms of the electron and muon currents

and

• We have introduced the four-vector current

• Matrix element is a four-vector scalar product – confirming it is Lorentz Invariant

   which has same form as the two terms in [ … ] in the matrix element
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Spin in e+e– Annihilation
• In general the electron and positron will not be polarized, i.e. there will be equal  
    numbers of positive and negative helicity states 
• There are four possible combinations of spins in the initial state !

e– e+ e– e+ e– e+e– e+

RL RR LL LR
• Similarly there are four possible helicity combinations in the final state 
• In total there are 16 combinations  e.g.  RL¦RR, RL¦RL, …. 
• To account for these states we need to sum over all 16 possible helicity 
    combinations and then average over the number of initial helicity states:

★ i.e. need to evaluate:

for all 16 helicity combinations ! 
★ Fortunately, in the limit                   only 4 helicity combinations give non-zero  
    matrix elements – we will see that this is an important feature of QED/QCD
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• In the C.o.M. frame in the limit 

e+e–

µ+

µ–

• Left- and right-handed helicity spinors (handout 3) for particles/anti-particles are: 

where

• In the limit                   these become:

and

• The initial-state electron can either be in a left- or right-handed helicity state
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• Similarly for the final state µ– which has polar angle      and choosing 

using
• And for the final state µ+ replacing obtain

• For the initial state positron                 can have either:

• Wish to calculate the matrix element

★ first consider the muon current          for 4 possible helicity combinations
µ–

µ+

µ–

µ+

µ–

µ+

µ–

µ+

RR RL LR LL

µ+

µ–



10

The Muon Current
•  Want to evaluate for all four helicity combinations 

•  For arbitrary spinors            with it is straightforward  to show that  the  
   components of               are  

•  Consider the             combination using 

with

(3)
(4)
(5)
(6)
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• Hence the four-vector muon current for the RL combination is

• The results for the 4 helicity combinations (obtained in the same manner) are:

• This is an important feature of QED. It applies equally to QCD.  
• In the Weak interaction only one helicity combination contributes.  
• The origin of this will be discussed in the last part of this lecture 
• But as a consequence of the 16 possible helicity combinations only 
    four given non-zero matrix elements

★ IN THE LIMIT                only two helicity combinations are non-zero !

µ–

µ+
µ–

µ+
µ–

µ+
µ–

µ+

RL
RR
LL
LR
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e– e+

µ+

µ–

e– e+

µ+

µ–

e– e+

µ+

µ–

e– e+

µ+

µ–

MRR

MLR MLL

MRL

★ For                             now only have to consider the 4 matrix elements:e+e– ¦ µ+µ–

µ–

µ+
µ–

µ+

• Previously we derived the muon currents for the allowed helicities:

• Now need to consider the electron current

Electron Positron Annihilation cont.
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The Electron Current
• The incoming electron and positron spinors (L and R helicities) are:

• The electron current can either be obtained from equations (3)-(6) as before or  
   it can be obtained directly from the expressions for the muon current.

• Taking the Hermitian conjugate of the muon current gives
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e– e+

e– e+

•  Taking the complex conjugate of the muon currents for the two non-zero 
    helicity configurations:

To obtain the electron currents we simply need to set 
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Matrix Element Calculation

• We can now calculate                             for the four possible helicity combinations. 

e– e+

µ+

µ–
the matrix element for                                 which will denote 

Here the first subscript refers to the helicity  
of the e- and the second to the helicity of the µ-.  
Don’t need to specify other helicities due to  
“helicity conservation”, only certain chiral  
  combinations are non-zero.

★ Using:

gives

e.g.

where
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Similarly

• Assuming that the incoming electrons and positrons are unpolarized, 
   all 4 possible initial helicity states are equally likely.  

-1 +1cosθ

e–
e+

µ+

µ–MRR

-1 +1cosθ

e–
e+

µ+

µ–MLR

-1 +1cosθ

e–
e+

µ+

µ–MRL

-1 +1cosθ

e–
e+

µ+

µ–MLL
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-1 +1cosθ

Differential Cross Section

e+e– ¦µ+µ–

•The cross section is obtained by averaging over the initial spin states  
   and summing over the final spin states:

Example:

pure QED,  O(α3)
QED  plus  Z  
contribution

Angular distribution becomes 
slightly asymmetric in higher 
order QED or when Z 
contribution is included

Mark II Expt., M.E.Levi et al., 
Phys Rev Lett 51 (1983) 1941



18

• The total cross section is obtained by integrating over           using 

 giving the QED total cross-section for the process e+e– ¦µ+µ–

★ Lowest order cross section 
    calculation provides a good 
    description of the data !

This is an impressive result. From 
first principles we have arrived at an  
expression for the electron-positron  
annihilation cross section which is  
good to 1%
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Spin Considerations
★The angular dependence of the QED electron-positron matrix elements can  
    be understood in terms of angular momentum
• Because of the allowed helicity states, the electron and positron interact 
   in a spin state with                 , i.e. in a total spin 1 state aligned along the 
   z axis:                or   

• Similarly the muon and anti-muon are produced in a total spin 1 state aligned 
   along an axis with polar angle  

e.g. MRR

e–
e+

µ+

µ–

• Hence                                where       corresponds to the spin state,               , of 
   the muon pair. 
• To evaluate this need to express               in terms of eigenstates of

• In the appendix (and also in IB QM) it is shown that:
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• Using the wave-function for a spin 1 state along an axis at angle 

can immediately understand the angular dependence 

-1 +1cosθ

e–
e+

µ+

µ–MRR

e–
e+

µ+

µ–MLR

-1 +1cosθ
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Lorentz Invariant form of Matrix Element

e– e+

µ+

µ–

•  Before concluding this discussion, note that the spin-averaged Matrix Element  
   derived above is written in terms of the muon angle in the C.o.M. frame. 
 

• The matrix element is Lorentz Invariant (scalar product of 4-vector currents) 
   and it is desirable to write it in a frame-independent form, i.e. express in terms  
   of Lorentz Invariant 4-vector scalar products
• In the C.o.M. 

giving:
• Hence we can write

★Valid in any frame !
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CHIRALITY
• The helicity eigenstates for a particle/anti-particle for                are: 

where
• Define the matrix

•In the limit                 the helicity states are also eigenstates of   

★ In general, define the eigenstates of        as LEFT and RIGHT HANDED CHIRAL  
        states

•  In the LIMIT              (and ONLY IN THIS LIMIT): 

i.e.
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• The projection operators, project out the chiral eigenstates

★This is a subtle but important point: in general the HELICITY and CHIRAL 
    eigenstates are not the same. It is only in the ultra-relativistic limit that the  
    chiral eigenstates correspond to the helicity eigenstates.

• In general, the eigenstates of the chirality operator are:

• Define the projection operators:

• We can then write any spinor in terms of it left and right-handed 
   chiral components:

• Note       projects out right-handed particle states and left-handed anti-particle states 

★Chirality is an import concept in the structure of QED, and any interaction of the  
     form
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Chirality in QED
• In QED the basic interaction between a fermion and photon is:

• Can decompose the spinors in terms of Left and Right-handed chiral components:

it is straightforward to show

• Using the properties of (Q8 on examples sheet)

(Q9 on examples sheet)

★ Hence only certain combinations of chiral eigenstates contribute to the  
     interaction. This statement is ALWAYS true.

•  For                , the chiral and helicity eigenstates are equivalent. This implies that  
   for                 only certain helicity combinations contribute to the QED vertex !  
   This is why previously we found that for two of the four helicity combinations  
   for the muon current were zero
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Scattering:

⬧ In the ultra-relativistic limit the helicity eigenstates ≡ chiral eigenstates 
⬧ In this limit, the only non-zero helicity combinations in QED are:

Annihilation:

Allowed QED Helicity Combinations 

R R L L

L

RL

R

“Helicity conservation”
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Summary
★ In the centre-of-mass frame the e+e– ¦µ+µ– differential cross-section is

NOTE: neglected masses of the muons, i.e. assumed 

e–
e+

µ+

µ–RR

e–
e+

µ+

µ–

e–

µ+

µ–

e–
e+

µ+

µ–

e+

RL LR LL

★ In QED only certain combinations of LEFT- and RIGHT-HANDED  CHIRAL  
    states give non-zero matrix elements

★ CHIRAL states defined by chiral projection operators

★ In limit                   the chiral eigenstates correspond to the HELICITY eigenstates 
     and only certain HELICITY combinations give non-zero matrix elements             
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Appendix : Spin 1 Rotation Matrices 

• Consider the spin-1 state with spin +1 along the  
    axis defined by unit vector

• Spin state is an eigenstate of          with eigenvalue +1

• Express in terms of linear combination of spin 1 states which are eigenstates  
   of

with

(A1)

• (A1) becomes

• Write        in terms of ladder operators

where

(A2)
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• from which we find

• (A2) becomes

• which gives

• using                                    the above equations yield

• hence
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• The coefficients                   are examples of what are known as quantum 
   mechanical rotation matrices. The express how angular momentum eigenstate  
   in a particular direction is expressed in terms of the eigenstates defined in a 
   different direction

• For spin-1                 we have just shown that       

• For spin-1/2  it is straightforward to show       


