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在QED、QCD和弱相互作⽤用顶点都可以写作为

146 Electron–positron annihilation

where the “slash” notation is shorthand for /p ≡ γ µpµ = Eγ0 − pxγ1 − pyγ2 − pzγ3.
Repeating the above derivation, it is straightforward to show that the antiparticle
spinors satisfy the completeness relation,

2∑

r=1

vrvr = (γ µpµ − mI) = /p − m, (6.41)

where the mass term enters with a different sign compared to the equivalent expres-
sion for particle spinors.

6.5.2 Spin sums and the trace formalism

The QED, QCD and weak interaction vertex factors all can be written in the form
u(p) Γ u(p′), where Γ is a 4 × 4 matrix constructed out of one or more Dirac γ-
matrices. In index notation, this product of spinors and γ-matrices can be written

u(p) Γ u(p′) = u(p) j Γji u(p′)i,

where the indices label the components and summation over repeated indices is
implied. It should be noted that u(p) Γ u(p′) is simply a (complex) number.1 For
the QED vertex Γ= γ µ and the matrix element for the process e+e−→ µ+µ− is
given by (6.3),

M f i = −
e2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]

= − e2

q2

[
v(p2)γ µu(p1)

] [
u(p3)γµv(p4)

]
, (6.42)

where summation over the index µ is implied. The matrix element squared |M f i|2
is the product ofM f i andM†f i, with

M†f i =
e2

q2

[
v(p2)γνu(p1)

]† [u(p3)γνv(p4)
]† ,

where the index ν has been used for this summation to avoid confusion with the
index µ in the expression forM f i given in (6.42). Because the components of the

1 If this is not immediately obvious, consider the 2 × 2 case of cTBa, where the equivalent product
can be written as

(c1, c2)
(

B11 B12

B22 B22

) (
a1

a2

)
= c1B11a1 + c1B12a2 + c2B21a1 + c2B22

= c jBjiai,

which is just the sum over the product of the components of a, c and B.

146 Electron–positron annihilation

where the “slash” notation is shorthand for /p ≡ γ µpµ = Eγ0 − pxγ1 − pyγ2 − pzγ3.
Repeating the above derivation, it is straightforward to show that the antiparticle
spinors satisfy the completeness relation,

2∑

r=1

vrvr = (γ µpµ − mI) = /p − m, (6.41)

where the mass term enters with a different sign compared to the equivalent expres-
sion for particle spinors.

6.5.2 Spin sums and the trace formalism

The QED, QCD and weak interaction vertex factors all can be written in the form
u(p) Γ u(p′), where Γ is a 4 × 4 matrix constructed out of one or more Dirac γ-
matrices. In index notation, this product of spinors and γ-matrices can be written

u(p) Γ u(p′) = u(p) j Γji u(p′)i,

where the indices label the components and summation over repeated indices is
implied. It should be noted that u(p) Γ u(p′) is simply a (complex) number.1 For
the QED vertex Γ= γ µ and the matrix element for the process e+e−→ µ+µ− is
given by (6.3),

M f i = −
e2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]

= − e2

q2

[
v(p2)γ µu(p1)

] [
u(p3)γµv(p4)

]
, (6.42)

where summation over the index µ is implied. The matrix element squared |M f i|2
is the product ofM f i andM†f i, with

M†f i =
e2

q2

[
v(p2)γνu(p1)

]† [u(p3)γνv(p4)
]† ,

where the index ν has been used for this summation to avoid confusion with the
index µ in the expression forM f i given in (6.42). Because the components of the

1 If this is not immediately obvious, consider the 2 × 2 case of cTBa, where the equivalent product
can be written as

(c1, c2)
(

B11 B12

B22 B22

) (
a1

a2

)
= c1B11a1 + c1B12a2 + c2B21a1 + c2B22

= c jBjiai,

which is just the sum over the product of the components of a, c and B.

指标意味着求和。注意：上式仅仅是个复数。
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因为

completeness relation
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relations are defined by the sum over the two possible spin states of the tensor
formed from the product of a spinor with its adjoint spinor,

2∑

s=1

us(p)us(p),

where the sum is for two orthogonal spin states. The sum can be performed using
the helicity basis or the spinors u1 and u2, both of which form a complete set of
states. Here it is most convenient to work with the spinors u1(p) and u2(p), in which
case the completeness relation is

2∑

s=1

us(p)us(p) ≡ u1(p)u1(p) + u2(p)u2(p).

In the Dirac–Pauli representation, the spinors u1 and u2 can be written as

us(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎝

φs

σ·p
E+mφs

⎞
⎟⎟⎟⎟⎟⎟⎠ with φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

Using (σ · p)† = σ · p, the adjoint spinor can be written

us = u†sγ
0 =
√

E + m
(
φT

s φT
s

(σ·p)†

E+m

) ( I 0
0 −I

)
=
√

E + m
(
φT

s −φT
s

(σ·p)
E+m

)
,

where I is the 2×2 identity matrix. Hence the completeness relation can be written

2∑

s=1

us(p)us(p) = (E + m)
2∑

s=1

⎛
⎜⎜⎜⎜⎜⎜⎝

φsφT
s − σ·pE+mφsφT

s
σ·p
E+mφsφT

s − (σ·p)2

(E+m)2φsφT
s

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

which using

2∑

s=1

φsφ
T
s =

(
1 0
0 1

)
and (σ · p)2 = p2 = (E + m)(E − m),

gives

2∑

s=1

us(p)us(p) =
(

(E + m)I −σ · p
σ · p (−E + m)I

)
. (6.39)

Equation (6.39) can be written in terms of the γ-matrices as

2∑

s=1

usus = (γ µpµ + mI) = /p + m, (6.40)
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Trace Theorems
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and expressing this in terms of a trace, leads to

∑

spins

|M f i|2 =
e4

q4L
µν
(e)L

(µ)
µν

=
e4

q4 Tr
(
[/p2 − m]γ µ[/p1 + m]γν

)
× Tr

(
[/p3 + M]γµ[/p4 − M]γν

)
,

(6.51)

where the masses of the initial- and final-state particles are respectively written as
m and M.

6.5.3 Trace theorems

The calculation of the spin-summed matrix element has been reduced to a prob-
lem of calculating traces involving combinations of γ-matrices. At first sight this
appears a daunting task, but fortunately there are a number of algebraic “tricks”
which greatly simplify the calculations. Firstly, traces have the properties

Tr (A + B) ≡ Tr (A) + Tr (B) , (6.52)

and are unchanged by cycling the order of the elements

Tr (AB . . .YZ) ≡ Tr (ZAB . . .Y) . (6.53)

Secondly, the algebra of the γ-matrices is defined by the anticommutation relation
of (4.33), namely

γ µγν + γνγ µ ≡ 2gµνI, (6.54)

where the presence of the 4 × 4 identity matrix has been made explicit. Taking the
trace of (6.54) gives

Tr
(
γ µγν

)
+ Tr

(
γνγ µ

)
= 2gµν Tr (I) ,

which using Tr (AB) =Tr (BA) becomes Tr (γ µγν) = gµν Tr (I), and hence

Tr
(
γ µγν

)
= 4gµν. (6.55)

The trace of any odd number of γ-matrices can be shown to be zero by inserting
γ5γ5 = I into the trace. For example, consider the trace of any three γ-matrices

Tr
(
γ µγνγ ρ

)
= Tr

(
γ5γ5γ µγνγ ρ

)

= Tr
(
γ5γ µγνγ ργ5

)
(traces are cyclical)

= −Tr
(
γ5γ5γ µγνγ ρ

)
(since γ5γ µ = −γ µγ5)
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where the last line follows from commuting γ5 through the three γ-matrices, each
time introducing a factor of −1. Hence Tr (γ µγνγ ρ) =−Tr (γ µγνγ ρ), which can
only be true if

Tr
(
γ µγνγ ρ

)
= 0. (6.56)

The same argument can be applied to show that the trace of any odd number of
γ-matrices is zero.

Finally, the trace of four γ-matrices can be obtained from (6.54) which allows
γ aγ b to be written as 2g ab − γ bγ a and repeated application of this identity gives

γ µγνγ ργσ = 2gµνγ ργσ − γνγ µγ ργσ

= 2gµνγ ργσ − 2gµργνγσ + γνγ ργ µγσ

= 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ − γνγ ργσγ µ

⇒ γ µγνγ ργσ + γνγ ργσγ µ = 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ. (6.57)

Taking the trace of both sides of (6.57) and using the cyclic property of traces

2Tr
(
γ µγνγ ργσ

)
= 2gµν Tr

(
γ ργσ

) − 2gµρ Tr
(
γνγσ

)
+ 2gµσ Tr

(
γνγ ρ

)
,

and using (6.55) for the trace of two γ-matrices gives the identity

Tr
(
γ µγνγ ργσ

)
= 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ. (6.58)

The full set of trace theorems, including those involving γ5 = iγ0γ1γ2γ3, are:

(a) Tr (I) = 4;

(b) the trace of any odd number of γ-matrices is zero;

(c) Tr (γ µγν) = 4gµν;

(d) Tr (γ µγνγ ργσ) = 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ;

(e) the trace of γ5 multiplied by an odd number of γ-matrices is zero;

(f) Tr
(
γ5

)
= 0;

(g) Tr
(
γ5γ µγν

)
= 0; and

(h) Tr
(
γ5γ µγνγ ργσ

)
= 4iε µνρσ, where ε µνρσ is antisymmetric under the inter-

change of any two indices.

Armed with these trace theorems, expressions such as that of (6.51) can be eval-
uated relatively easily; it is worth going through one example of a matrix element
calculation using the trace methodology in gory detail.
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and expressing this in terms of a trace, leads to
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(e)L
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=
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)
,

(6.51)

where the masses of the initial- and final-state particles are respectively written as
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where the last line follows from commuting γ5 through the three γ-matrices, each
time introducing a factor of −1. Hence Tr (γ µγνγ ρ) =−Tr (γ µγνγ ρ), which can
only be true if

Tr
(
γ µγνγ ρ

)
= 0. (6.56)

The same argument can be applied to show that the trace of any odd number of
γ-matrices is zero.

Finally, the trace of four γ-matrices can be obtained from (6.54) which allows
γ aγ b to be written as 2g ab − γ bγ a and repeated application of this identity gives

γ µγνγ ργσ = 2gµνγ ργσ − γνγ µγ ργσ

= 2gµνγ ργσ − 2gµργνγσ + γνγ ργ µγσ

= 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ − γνγ ργσγ µ

⇒ γ µγνγ ργσ + γνγ ργσγ µ = 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ. (6.57)

Taking the trace of both sides of (6.57) and using the cyclic property of traces

2Tr
(
γ µγνγ ργσ

)
= 2gµν Tr

(
γ ργσ

) − 2gµρ Tr
(
γνγσ

)
+ 2gµσ Tr

(
γνγ ρ

)
,

and using (6.55) for the trace of two γ-matrices gives the identity

Tr
(
γ µγνγ ργσ

)
= 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ. (6.58)

The full set of trace theorems, including those involving γ5 = iγ0γ1γ2γ3, are:

(a) Tr (I) = 4;

(b) the trace of any odd number of γ-matrices is zero;

(c) Tr (γ µγν) = 4gµν;

(d) Tr (γ µγνγ ργσ) = 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ;

(e) the trace of γ5 multiplied by an odd number of γ-matrices is zero;

(f) Tr
(
γ5

)
= 0;

(g) Tr
(
γ5γ µγν

)
= 0; and

(h) Tr
(
γ5γ µγνγ ργσ

)
= 4iε µνρσ, where ε µνρσ is antisymmetric under the inter-

change of any two indices.

Armed with these trace theorems, expressions such as that of (6.51) can be eval-
uated relatively easily; it is worth going through one example of a matrix element
calculation using the trace methodology in gory detail.
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FeynCalc - ⾼高能物理符号计算软件
http://www.feyncalc.org
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FeynCalc - ⾼高能物理符号计算软件

Sample code : e+ e" #
μ+ μ" scattering

Qing!Hong Cao (Particle Physics)

Loading the package FeynCalc
<< HighEnergyPhysics`fc`
Loading FeynCalc from /Users/cao/Library/Mathematica/Applications/HighEnergyPhysics
FeynCalc 8.2.0 For help, type ?FeynCalc, open FeynCalcRef8.nb or visit www.feyncalc.org
Loading FeynArts, see www.feynarts.de for documentation
? GA
? GS
? Tr

GA[mu] can be used as input for gamma_mu and is
transformed into DiracMatrix[mu] by FeynCalcInternal.

GS[p] is transformed into DiracSlash[p] by FeynCalcInternal.
GS[p,q, ...] is equivalent to GS[p].GS[q]. ...

FeynCalc extension: Tr[list] finds the trace of the matrix or tensor list. Tr[list, f] finds a
generalized trace, combining terms with f instead of Plus. Tr[list, f, n]
goes down to level n in list.

Tr[ expression ] calculates the DiracTrace, i.e., TR[ expression ],
if any of DiracGamma, DiracSlash, GA, GAD, GS or GSD are present in expression. $

��
	����
term1 = Tr[GS[p1].GA[β].GS[p2].GA[α]]

4 %gα β p1 ·p2 + p1β p2α + p1α p2β

term2 = Tr[(GS[p3] ( mf).GA[β].(GS[p4] + mf).GA[α]]

4 mf2 %gα β % gα β p3 ·p4 + p3β p4α + p3α p4β

numsq = Calc[term1 term2]

32 mf2 p1 ·p2 + 32 p1 ·p4 p2 ·p3 + 32 p1 ·p3 p2 ·p4

spin = (1 + 2) , (1 + 2);
prefactor = (e^4 Q^2 + s^2);
matsq = spin , prefactor , numsq ++ Simplify

8 e4 Q2 mf2 p1 ·p2 + p1 ·p4 p2 ·p3 + p1 ·p3 p2 ·p4

s2

�
���� 
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�
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�
���� 

replace rule #1

rr1 = {
Pair[Momentum[p1], Momentum[p1]] . 0,
Pair[Momentum[p2], Momentum[p2]] . 0,
Pair[Momentum[p3], Momentum[p3]] . mf,
Pair[Momentum[p4], Momentum[p4]] . mf,
Pair[Momentum[p1], Momentum[p2]] . s + 2,
Pair[Momentum[p1], Momentum[p3]] . (mf^2 ( t) + 2,
Pair[Momentum[p1], Momentum[p4]] . (mf^2 ( u) + 2 ,
Pair[Momentum[p2], Momentum[p3]] . (mf^2 ( u) + 2,
Pair[Momentum[p2], Momentum[p4]] . (mf^2 ( t) + 2,
Pair[Momentum[p3], Momentum[p4]] . (s ( 2 mf^2) + 2

}

p12 , 0, p22 , 0, p32 , mf, p42 , mf, p1 ·p2 ,
s

2
, p1 ·p3 ,

1

2
mf2 % t,

p1 ·p4 ,
1

2
mf2 % u, p2 ·p3 ,

1

2
mf2 % u, p2 ·p4 ,

1

2
mf2 % t, p3 ·p4 ,

1

2
s % 2 mf2

replace rule #2 and #3 
In the frame of center of mass of e + and e -

metric = {{1, 0, 0, 0}, {0, (1, 0, 0}, {0, 0, (1, 0}, {0, 0, 0, (1}};

p1 = 
s

2
, 0, 0,

s

2
;

p2 = 
s

2
, 0, 0, (

s

2
;

p3 =
s

2
{1, β Sin[θ], 0, β Cos[θ]};

p4 =
s

2
{1, (β Sin[θ], 0, (β Cos[θ]};

rr2 = {t . (p1 ( p3).metric.(p1 ( p3) ++ Simplify,
u . (p1 ( p4).metric.(p1 ( p4) ++ Simplify}

rr3 = mf . 1 ( β^2 , s  2

t,%
1

4
s β2 % 2 β cos(θ) + 1, u,%

1

4
s β2 + 2 β cos(θ) + 1

mf ,
1

2
1 % β2 s 

2     sample_trace.nb

定义洛伦兹不变量：
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�
���� 

replace rule #1

rr1 = {
Pair[Momentum[p1], Momentum[p1]] . 0,
Pair[Momentum[p2], Momentum[p2]] . 0,
Pair[Momentum[p3], Momentum[p3]] . mf,

Pair[Momentum[p4], Momentum[p4]] . mf,
Pair[Momentum[p1], Momentum[p2]] . s + 2,
Pair[Momentum[p1], Momentum[p3]] . (mf^2 ( t) + 2,
Pair[Momentum[p1], Momentum[p4]] . (mf^2 ( u) + 2 ,
Pair[Momentum[p2], Momentum[p3]] . (mf^2 ( u) + 2,
Pair[Momentum[p2], Momentum[p4]] . (mf^2 ( t) + 2,
Pair[Momentum[p3], Momentum[p4]] . (s ( 2 mf^2) + 2

}

p12 , 0, p22 , 0, p32 , mf, p42 , mf, p1 ·p2 ,
s

2
, p1 ·p3 ,

1

2
mf2 % t,

p1 ·p4 ,
1

2
mf2 % u, p2 ·p3 ,

1

2
mf2 % u, p2 ·p4 ,

1

2
mf2 % t, p3 ·p4 ,

1

2
s % 2 mf2

replace rule #2 and #3 
In the frame of center of mass of e + and e -

metric = {{1, 0, 0, 0}, {0, (1, 0, 0}, {0, 0, (1, 0}, {0, 0, 0, (1}};

p1 = 
s

2
, 0, 0,

s

2
;

p2 = 
s

2
, 0, 0, (

s

2
;

p3 =
s

2
{1, β Sin[θ], 0, β Cos[θ]};

p4 =
s

2
{1, (β Sin[θ], 0, (β Cos[θ]};

rr2 = {t . (p1 ( p3).metric.(p1 ( p3) ++ Simplify,
u . (p1 ( p4).metric.(p1 ( p4) ++ Simplify}

rr3 = mf . 1 ( β^2 , s  2

t,%
1

4
s β2 % 2 β cos(θ) + 1, u,%

1

4
s β2 + 2 β cos(θ) + 1

mf ,
1

2
1 % β2 s 

2     sample_trace.nb

选取质⼼心系：

��
	��
dsdΩ =

1

64 π2 s
, β , matsq +. rr1 +. {e . Sqrt[4 π α]}

2 α2 βQ2 mf2 s
2

+ 1
4
mf2 % t2 + 1

4
mf2 % u2

s3

dsdΩ = dsdΩ +. rr2 +. rr3 ++ Expand

α2 β3 Q2 cos2(θ)

4 s
%

α2 β3 Q2

4 s
+

α2 βQ2

2 s

dsdz = dsdΩ , (2 π);

�
	��
XSEC[dsdzfunc_] := Module{z, tmp, integral, result},

tmp = dsdzfunc +. Cos[θ] . z;

integral =  tmp 9z;

result = (integral +. z . 1) ( (integral +. z . (1);
Return[result]



XSEC[dsdz] ++ Simplify

%
2 π α2 β β2 % 3Q2

3 s

sample_trace.nb     3

��
	��
dsdΩ =

1

64 π2 s
, β , matsq +. rr1 +. {e . Sqrt[4 π α]}

2 α2 βQ2 mf2 s
2

+ 1
4
mf2 % t2 + 1

4
mf2 % u2

s3

dsdΩ = dsdΩ +. rr2 +. rr3 ++ Expand

α2 β3 Q2 cos2(θ)

4 s
%

α2 β3 Q2

4 s
+

α2 βQ2

2 s

dsdz = dsdΩ , (2 π);

�
	��
XSEC[dsdzfunc_] := Module{z, tmp, integral, result},

tmp = dsdzfunc +. Cos[θ] . z;

integral =  tmp 9z;

result = (integral +. z . 1) ( (integral +. z . (1);
Return[result]



XSEC[dsdz] ++ Simplify

%
2 π α2 β β2 % 3Q2

3 s

sample_trace.nb     3
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还要考虑其他内部动⼒力学⾃自由度，例如颜⾊色等

What is R value
Definition 

R value is the inclusive hadronic cross section in e+e− annihilation, and normalized 
by Born cross section of µ+µ−.

R≡ µ-

e+

e-

µ+

hadrons-e

e+

q-

q
σ

σ
flavor
color

= ΣQf
2

lowest
order

Significances: the precision of R value has important contributions to the 
precise test of the Standard Model (SM), such as the running electromagnetic 
coupling constant α(s), abnormal µ magnetic moment (g-2),  the SM global 
fitting of the Higgs mass, direct test to the pQCD prediction on R(s).

below 5 GeV, use data                          above 5 GeV, use pQCD

R值测量
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总结
1）QED散射截⾯面：⾃自旋求和

150 Electron–positron annihilation

where the last line follows from commuting γ5 through the three γ-matrices, each
time introducing a factor of −1. Hence Tr (γ µγνγ ρ) =−Tr (γ µγνγ ρ), which can
only be true if

Tr
(
γ µγνγ ρ

)
= 0. (6.56)

The same argument can be applied to show that the trace of any odd number of
γ-matrices is zero.

Finally, the trace of four γ-matrices can be obtained from (6.54) which allows
γ aγ b to be written as 2g ab − γ bγ a and repeated application of this identity gives

γ µγνγ ργσ = 2gµνγ ργσ − γνγ µγ ργσ

= 2gµνγ ργσ − 2gµργνγσ + γνγ ργ µγσ

= 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ − γνγ ργσγ µ

⇒ γ µγνγ ργσ + γνγ ργσγ µ = 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ. (6.57)

Taking the trace of both sides of (6.57) and using the cyclic property of traces

2Tr
(
γ µγνγ ργσ

)
= 2gµν Tr

(
γ ργσ

) − 2gµρ Tr
(
γνγσ

)
+ 2gµσ Tr

(
γνγ ρ

)
,

and using (6.55) for the trace of two γ-matrices gives the identity

Tr
(
γ µγνγ ργσ

)
= 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ. (6.58)

The full set of trace theorems, including those involving γ5 = iγ0γ1γ2γ3, are:

(a) Tr (I) = 4;

(b) the trace of any odd number of γ-matrices is zero;

(c) Tr (γ µγν) = 4gµν;

(d) Tr (γ µγνγ ργσ) = 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ;

(e) the trace of γ5 multiplied by an odd number of γ-matrices is zero;

(f) Tr
(
γ5

)
= 0;

(g) Tr
(
γ5γ µγν

)
= 0; and

(h) Tr
(
γ5γ µγνγ ργσ

)
= 4iε µνρσ, where ε µνρσ is antisymmetric under the inter-

change of any two indices.

Armed with these trace theorems, expressions such as that of (6.51) can be eval-
uated relatively easily; it is worth going through one example of a matrix element
calculation using the trace methodology in gory detail.

1.1) Completion Relations

145 6.5 *Trace techniques

relations are defined by the sum over the two possible spin states of the tensor
formed from the product of a spinor with its adjoint spinor,

2∑

s=1

us(p)us(p),

where the sum is for two orthogonal spin states. The sum can be performed using
the helicity basis or the spinors u1 and u2, both of which form a complete set of
states. Here it is most convenient to work with the spinors u1(p) and u2(p), in which
case the completeness relation is

2∑

s=1

us(p)us(p) ≡ u1(p)u1(p) + u2(p)u2(p).

In the Dirac–Pauli representation, the spinors u1 and u2 can be written as

us(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎝

φs

σ·p
E+mφs

⎞
⎟⎟⎟⎟⎟⎟⎠ with φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

Using (σ · p)† = σ · p, the adjoint spinor can be written

us = u†sγ
0 =
√

E + m
(
φT

s φT
s

(σ·p)†

E+m

) ( I 0
0 −I

)
=
√

E + m
(
φT

s −φT
s

(σ·p)
E+m

)
,

where I is the 2×2 identity matrix. Hence the completeness relation can be written

2∑

s=1

us(p)us(p) = (E + m)
2∑

s=1

⎛
⎜⎜⎜⎜⎜⎜⎝

φsφT
s − σ·pE+mφsφT

s
σ·p
E+mφsφT

s − (σ·p)2

(E+m)2φsφT
s

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

which using

2∑

s=1

φsφ
T
s =

(
1 0
0 1

)
and (σ · p)2 = p2 = (E + m)(E − m),

gives

2∑

s=1

us(p)us(p) =
(

(E + m)I −σ · p
σ · p (−E + m)I

)
. (6.39)

Equation (6.39) can be written in terms of the γ-matrices as

2∑

s=1

usus = (γ µpµ + mI) = /p + m, (6.40)

146 Electron–positron annihilation

where the “slash” notation is shorthand for /p ≡ γ µpµ = Eγ0 − pxγ1 − pyγ2 − pzγ3.
Repeating the above derivation, it is straightforward to show that the antiparticle
spinors satisfy the completeness relation,

2∑

r=1

vrvr = (γ µpµ − mI) = /p − m, (6.41)

where the mass term enters with a different sign compared to the equivalent expres-
sion for particle spinors.

6.5.2 Spin sums and the trace formalism

The QED, QCD and weak interaction vertex factors all can be written in the form
u(p) Γ u(p′), where Γ is a 4 × 4 matrix constructed out of one or more Dirac γ-
matrices. In index notation, this product of spinors and γ-matrices can be written

u(p) Γ u(p′) = u(p) j Γji u(p′)i,

where the indices label the components and summation over repeated indices is
implied. It should be noted that u(p) Γ u(p′) is simply a (complex) number.1 For
the QED vertex Γ= γ µ and the matrix element for the process e+e−→ µ+µ− is
given by (6.3),

M f i = −
e2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]

= − e2

q2

[
v(p2)γ µu(p1)

] [
u(p3)γµv(p4)

]
, (6.42)

where summation over the index µ is implied. The matrix element squared |M f i|2
is the product ofM f i andM†f i, with

M†f i =
e2

q2

[
v(p2)γνu(p1)

]† [u(p3)γνv(p4)
]† ,

where the index ν has been used for this summation to avoid confusion with the
index µ in the expression forM f i given in (6.42). Because the components of the

1 If this is not immediately obvious, consider the 2 × 2 case of cTBa, where the equivalent product
can be written as

(c1, c2)
(

B11 B12

B22 B22

) (
a1

a2

)
= c1B11a1 + c1B12a2 + c2B21a1 + c2B22

= c jBjiai,

which is just the sum over the product of the components of a, c and B.

1.2) Trace Theorems
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总结

2）R值测量

What is R value
Definition 

R value is the inclusive hadronic cross section in e+e− annihilation, and normalized 
by Born cross section of µ+µ−.

R≡ µ-

e+

e-

µ+

hadrons-e

e+

q-

q
σ

σ
flavor
color

= ΣQf
2

lowest
order

Significances: the precision of R value has important contributions to the 
precise test of the Standard Model (SM), such as the running electromagnetic 
coupling constant α(s), abnormal µ magnetic moment (g-2),  the SM global 
fitting of the Higgs mass, direct test to the pQCD prediction on R(s).

below 5 GeV, use data                          above 5 GeV, use pQCD


