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为什么QFT在⾛走下坡路?
今天量⼦子场论 
如⽇日中天 
炙⼿手可热



量⼦子电动⼒力学（QED）
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重整化
QED: 微扰展开计算中的⽆无穷⼤大问题
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Bare vertex Radiative correction
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Fig. 12.1 The bare vertex represents a basic element in Feynman di-
agrams, at which an electron emits or absorbs a photon. The radiative
correction gives it structure, and contributes to the “anomalous magnetic
moment” of the electron.
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Electron propagator
Radiative correction

(Self-energy)

Fig. 12.2 Radiative corrections to the electron propagator describe self-
interaction that contributes to mass renormalization.

interaction occurs at one point, the correction smears it out over a
region.

There are higher order diagrams that will improve the accuracy of
the calculation. When all possible Feynman diagrams are included,
the electron is seen to emit a photon from within a “blob”, which
contains the electron’s structure endowed by QED. Attributes of the
structure include the “anomalous magnetic moment” that we shall
describe later.

12.3. Self-energy

Figure 12.2 shows the “bare” propagator of the electron, which is
represented by a directed line, and is a building block of Feynman
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“整个30年代，物理学界共识是，量⼦子场论并不被看好。它可能有⽤用，但只是
权宜之计，需要添加全新的东⻄西才能使它说的通。”
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Photon propagator Radiative correction
(Vacuum polarization)

e0 e0

Fig. 12.3 Vacuum polarization: a propagating photon can momentarily
materialize into a virtual electron–positron pair, thus producing charge sep-
aration in the vacuum.

diagrams. Physically it describes the probability amplitude that an
electron created at point A can reach point B.

The radiative correction to the bare propagator involves the emis-
sion and absorption of a virtual photon by an electron. This cor-
responds to self-interaction of the electron. This and higher order
corrections lead to a “full” propagator that describes a “dressed”
electron.

The bare propagator contains the bare mass, a parameter in the
QED Hamiltonian. The radiation corrections yield a “self-energy”
corresponding to a mass correction:

Physical mass = (Bare mass) + (Self-mass).

This formula expresses what is known as mass renormalization.

12.4. Vacuum polarization

Photon self-energy graphs are shown in Fig. 12.3. In the lowest or-
der correction to the unperturbed propagator, the photon creates
a virtual pair from the vacuum, which annihilates, re-emitting the
photon. The momentary charge separation endows the vacuum with
a distribution of induced electric dipole moments, and the process is
called “vacuum polarization”.

The photon mass cannot change, because it is kept at zero by
gauge invariance. The chief effect of vacuum polarization is to alter
the electron’s charge distribution as seen by an external probe. It
leads to charge renormalization, as discussed below.



QED重整化
• 20世纪40年代后期才消除QED理论中的不健全之处 

 Feynman, Schwinger, Tomonaga分别提出重整化思想 

1965 Nobel Dyson

 1949年Dyson证明他们三种⽅方案是等价的
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Muon g-2
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Toichiro Kinoshita (1925–)

Fig. 12.10 Toichiro Kinoshita, whose life work culminated in the calcu-
lation of the electron anomalous moment to 8th order. The result agrees
with experiment to a precision of one part in a trillion.

Here are the historical theoretical results, with year of publication
and number of Feynman diagrams computed:4

1
2gtheory = 1 (a) 1928 (Dirac equation)

+ (α/2π) (b) 1949 (1 diagram)
−0.32848 (α/π)2 (c) 1958 (18 diagrams)
+ (1.195 ± 0.026) (α/π)3 (d) 1974 (72 diagrams)
− (1.7283 (35)) (α/π)4 + (Non-QED) (e) 2006 (891 diagrams).

The non-QED contribution arises from the weak and strong interac-
tions. This result is so precise that, through comparison with exper-
iment, one can obtain the most accurate determination of the fine
structure constant so far:

1
α

= 137.035999710(96) .

4(a) From Dirac equation; (b) J. Schwinger, Phys. Rev. 75, 651 (1949); (c) C. M.
Summerfield, Ann. Phys. (NY ) 5, 26 (1958); (d) P. Cvitanovic and T. Kinoshita,
Phys. Rev. D 10, 4007 (1974); (e) T. Kinoshita and M. Nio, Phys. Rev. D 73,
013003 (2006).
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Complete Tenth-Order QED Contribution to the Muon g ! 2
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We report the result of our calculation of the complete tenth-order QED terms of the muon g! 2. Our
result is að10Þ! ¼ 753:29 (1.04) in units of ð"=#Þ5, which is about 4.5 s.d. larger than the leading-

logarithmic estimate 663(20). We also improve the precision of the eighth-order QED term of a!,
obtaining að8Þ! ¼ 130:8794 (63) in units of ð"=#Þ4. The new QED contribution is a!ðQEDÞ ¼
116 584 718 951 ð80Þ % 10!14, which does not resolve the existing discrepancy between the standard-

model prediction and measurement of a!.

DOI: 10.1103/PhysRevLett.109.111808 PACS numbers: 13.40.Em, 12.20.Ds, 14.60.Ef

The anomalous magnetic moment a! of the muon has
been studied extensively both experimentally and theoreti-
cally since it provides one of the promising paths in
exploring possible new physics beyond the standard model.
For this purpose it is crucial to know the prediction of the
standard model as precisely as possible.

On the experimental side the current world average of
the measured a! is [1,2]:

a!ðexpÞ ¼ 116 592 089 ð63Þ % 10!11 ½0:5 ppm': (1)

New experiments designed to improve the precision further
are being prepared at Fermilab [3] and J-PARC [4].

In the standard model, a! can be divided into electro-
magnetic, hadronic, and electroweak contributions

a! ¼ a!ðQEDÞ þ a!ðhadronicÞ þ a!ðelectroweakÞ: (2)

At present a! (hadronic) is the largest source of theoretical
uncertainty. The uncertainty comes mostly from the Oð"2Þ
hadronic vacuum-polarization (v.p.) term, " being the
fine-structure constant. The lattice QCD simulations
have attempted to evaluate this contribution [5–10]. At
present, most accurate evaluations must rely on the
experimental information. Three types of measurements
are available for this purpose: (1) eþe! ! hadrons,
(2) $) ! %þ #) þ #0, (3) eþe! ! &þ hadrons.
These processes have been investigated intensely by
many groups [11–13]. We list here one of them [13]:

a!ðhad:v:p:Þ¼6949:1ð37:2Þexpð21:0Þrad%10!11; (3)

which overlaps other values based on the eþe! data [11,12]
and makes the standard-model prediction closest to the
experiment (1). The next-to-leading-order (NLO) hadronic
vacuum-polarization contribution is also known [13]:

a!ðNLO had:v:p:Þ ¼ !98:4ð0:6Þexpð0:4Þrad % 10!11: (4)

The hadronic light-by-light scattering contribution (l-l) is
of similar size as a! (NLO had.v.p.), but has a much larger
theoretical uncertainty [14–17]

a!ðhad:l-lÞ ¼ 116ð40Þ % 10!11; (5)

where the uncertainty 40% 10!11 covers almost all values
obtained in different publications.
The electroweak contribution has been calculated up to

2-loop order [18–21]:

a!ðweakÞ ¼ 154ð2Þ % 10!11: (6)

Since this uncertainty is 30 times smaller than the experi-
mental precision of (1), it can be regarded as known
precisely.
The primary purpose of this letter is to report the com-

plete numerical evaluation of all tenth-order QED contri-
bution to a!. It leads to a sizable reduction of the
uncertainty of the previous estimate by the leading-log
approximations [22,23]. We have also improved the nu-
merical precision of the eighth-order QED contribution
including the newly evaluated tau-lepton contribution.
Together they represent a significant reduction in the theo-
retical uncertainty of the QED part of a!.
The QED contribution to a! can be evaluated by the

perturbative expansion in "=#:

a!ðQEDÞ ¼
X1

n¼1

!
"

#

"
n
að2nÞ! ; (7)

where að2nÞ! is finite thanks to the renormalizability of QED
and can be written as

að2nÞ! ¼ Að2nÞ
1 þ Að2nÞ

2 ðm!=meÞ þ Að2nÞ
2 ðm!=m$Þ

þ Að2nÞ
3 ðm!=me;m!=m$Þ: (8)

PRL 109, 111808 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 SEPTEMBER 2012

0031-9007=12=109(11)=111808(4) 111808-1 ! 2012 American Physical Society

Kinoshita

⼈人类精确计算的登峰造极之作



量⼦子场论⼤大萧条
1949年后的⼏几年内，因为QED理论的极⼤大成功，⼈人们对量
⼦子场论的热情处于发烧状态。许多理论物理学家都认为很
快就会完全理解所有的微观现象，不仅仅限于光⼦子、电⼦子
和正电⼦子⽽而已。 

然⽽而不久，这种信⼼心就崩溃了——量⼦子场论的股票在物理
学股市上⼤大跌，并因此进⼊入第⼆二轮熊市。不幸的是，这次
⼤大萧条持续了近20年。
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Flavour Symmetry of the Strong Interaction

★ Assume the strong interaction treats all quark flavours equally (it does)
•Because   :

  The strong interaction possesses an approximate flavour symmetry 
   i.e. from the point of view of the strong interaction nothing changes 
   if all up quarks are replaced by down quarks and vice versa.                     

We can extend this idea to the quarks:

• Express the invariance of the strong interaction under                as  
   invariance under “rotations” in an abstract isospin space  

• Choose the basis

The 2x2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters 
But there are four constraints from  

8 – 4 = 4 independent matrices
•In the language of group theory the four matrices form the U(2) group
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 not a flavour transformation and of no relevance here.

• For an infinitesimal transformation, in terms of the Hermitian generators

• A linearly independent choice for        are the Pauli spin matrices

• The proposed flavour symmetry of the strong interaction has the same  
    transformation properties as SPIN !

• One of the matrices corresponds to multiplying by a phase factor

• Define ISOSPIN:

• The remaining three matrices form an SU(2) group (special unitary) with

• Check this works, for an infinitesimal transformation

Which is, as required, unitary and has unit determinant
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Properties of Isopin
• Isospin has the exactly the same properties as spin

• The eigenstates are exact analogues of the eigenstates of ordinary 
   angular momentum

with
• In terms of isospin:

d u

As in the case of spin, have three non-commuting operators,                ,   and  
even though all three correspond to observables, can’t know them simultaneously.  
So label states in terms of  total isospin      and the third component of isospin

NOTE: isospin has nothing to do with spin – just the same mathematics

• In general      



• In strong interactions       and       are conserved, analogous to conservation of 
         and       for angular momentum         30

• Can define isospin ladder operators – analogous to spin ladder operators

★ Combination of isospin: e.g. what is the isospin of a system of two d quarks, 
    is exactly analogous to combination of  spin  (i.e. angular momentum)

•      additive :  

•     in integer steps from                             to   

★ Assumed symmetry of Strong Interaction under isospin transformations 
     implies the existence of conserved quantites

Step up/down in      until reach end of multiplet

• Ladder operators turn                 and 

u ¦d d ¦u
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Combining Quarks

   Isospin starts to become useful in defining states of more than one quark. 
      e.g. two quarks, here we have four possible combinations:

•  We can immediately identify the extremes

To obtain the             state use  ladder operators 

The final state,           , can be found from orthogonality with

(      additive)

Goal: derive proton wave-function

• First combine two quarks, then combine the third 
• Use requirement that fermion wave-functions are anti-symmetric 

Note:        represents two 
states with the same value 
of 
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• Can move around within multiplets using ladder operators

• States with different total isospin are physically different – the isospin 1 triplet is  
    symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets,  
     e.g. to obtain the               states, step up from  

• note, as anticipated        

★ Now add an additional up or down quark. From each of the above 4 states  
      get two new isospin states with  

6 2

• From four possible combinations of isospin doublets obtain a triplet of  
   isospin 1 states and a singlet isospin 0 state 



From the        states on previous page, use orthoganality to find                 states  

33

★Derive the               states from 

★ 6
★ The        states on the previous page give another                 doublet   2
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★The eight states  
    are grouped into an isospin quadruplet and two isospin doublets

A quadruplet of states which 
are symmetric under the  
interchange of any two quarks

Mixed symmetry.  
Anti-symmetric for  1         2

Mixed symmetry.  
Symmetric for  1         2

 S

MS

MA

•  Different multiplets have different symmetry properties

• Mixed symmetry states have no definite symmetry under interchange of  
    quarks               etc. 
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Combining Spin

Mixed symmetry.  
Anti-symmetric for  1         2

Mixed symmetry.  
Symmetric for  1         2MS

MA

A quadruplet of states which 
are symmetric under the  
interchange of any two quarks

 S

• Can apply exactly the same mathematics to determine the possible spin  
    wave-functions for a combination of 3 spin-half particles

• Can now form total wave-functions for combination of three quarks
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 Baryon Wave-functions (ud)
★Quarks are fermions so require that the total wave-function is anti-symmetric under  
     the interchange of any two quarks

★ the total wave-function can be expressed in terms of: 

★ The colour wave-function for all bound qqq states is  anti-symmetric 

• Here we will only consider the lowest mass, ground state, baryons where there 
     is no internal orbital angular momentum.  
•  For L=0 the spatial wave-function is symmetric  (-1)L.

symmetric

★ Two ways to form a totally symmetric wave-function from spin and  isospin states:

❶ combine totally symmetric spin and isospin wave-functions 

Spin 3/2 
Isospin 3/2

anti-symmetric
Overall anti-symmetric
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❷ combine mixed symmetry spin and mixed symmetry isospin states   
• Both                         and                         are sym. under inter-change of  quarks 

• However, it is not difficult to show that the (normalised) linear combination:

   is totally symmetric (i.e. symmetric under                                              )    

• The spin-up proton wave-function is therefore:

NOTE: not always necessary to use the fully symmetrised proton wave-function, 
    e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

Spin 1/2 
Isospin 1/2

• Not sufficient,  these combinations have no definite symmetry under 
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Anti-quarks and Mesons (u and d)
★The u, d quarks and u, d anti-quarks are represented as isospin doublets

•  Subtle point: The ordering and the minus sign in the anti-quark doublet ensures  
   that anti-quarks and quarks transform in the same way (see Appendix I).  This is  
   necessary if we want physical predictions to be invariant under 

Compare with 

• Consider the effect of ladder operators on the anti-quark isospin states

e.g

•  The effect of the ladder operators on anti-particle isospin states are: 
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Light ud Mesons

• Consider the        combinations in terms of isospin 

To obtain the               states use ladder operators and orthogonality 

• Orthogonality gives:

★ Can now construct meson states from combinations of up/down quarks

The bar indicates  
this is the isospin 
representation of  
an anti-quark
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Triplet of             states and a singlet            state  

•  You will see this written as

•  To show the state obtained from orthogonality with             is a singlet use  
    ladder operators

similarly 

★ To summarise:

★ A singlet state is a “dead-end” from the point of view of ladder operators

Quark doublet Anti-quark doublet



41

SU(3) Flavour
★ Extend these ideas to include the strange quark. Since                            don’t 
     have an exact symmetry. But        not so very different from                  and can  
     treat the strong interaction (and resulting hadron states)  as if it were  
     symmetric under  

• NOTE: any results obtained from this assumption are only approximate 
               as the symmetry is not exact.  

• The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters 
   There are 9 constraints from  

Can form 18 – 9  = 9 linearly independent matrices 
These 9 matrices form a U(3) group. 

• The remaining 8 matrices have                     and form an SU(3) group 

• The assumed uds flavour symmetry can be expressed as

• As before, one matrix is simply the identity multiplied by a complex phase and  
    is of no interest in the context of flavour symmetry

• The eight matrices (the Hermitian generators) are:
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★In SU(3) flavour, the three quark states are represented by:

★In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows 
   us to write the first three matrices:

u 1  di.e.

with

▪ The third component of isospin is now written

▪      “counts the number of up quarks – number of down quarks in a state 

d u▪  As before, ladder operators
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u 1 s

d 1 s

▪ Now consider the matrices corresponding to the  u 1 s and d 1 s  

• Define the eighth matrix,      ,  as the linear combination:  

which specifies the “vertical position” in the 2D plane

• Hence in addition to                                   have two other traceless diagonal matrices 

• However the three diagonal matrices are not be independent. 

d u

s“Only need two axes (quantum numbers)  
to specify a state in the 2D plane”: (I3,Y) 
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★ The other six matrices form six ladder operators which step between the states

u 1 d

u 1 s

d 1 s

d u

s

with

and the eight Gell-Mann matrices 
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Quarks and anti-quarks in SU(3) Flavour

Quarks

Anti-Quarks

•The anti-quarks have opposite SU(3) flavour quantum numbers

du

s

d u

s
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SU(3) Ladder Operators
•  SU(3) uds flavour symmetry contains ud, us  
   and ds SU(2) symmetries 
  
• Consider the                symmetry “V-spin” which has 
    the associated               ladder operator  

with

d u

s

s

u d

SU(3) LADDER 
OPERATORS

all other combinations give zero

★The effects of the six ladder operators are:



47

Light (uds) Mesons

•  The three central states, all of which have                             can be obtained using 
    the ladder operators and orthogonality. Starting from the outer states can reach 
    the centre in six ways

•  Only two of these six states are linearly independent. 
•  But there are three states with 
•  Therefore one state is not part of the same 
   multiplet, i.e. cannot be reached with ladder ops.

• Use ladder operators to construct uds mesons from the nine possible         states
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• First form two linearly independent orthogonal states from:

★ If the SU(3) flavour symmetry were exact, the choice of states wouldn’t  
     matter. However,                      and the symmetry is only approximate.

• Experimentally observe three light mesons with m~140 MeV:
• Identify one state (the       ) with the isospin triplet (derived previously)

• The second state can be obtained by taking the linear combination of the other 
    two states which is orthogonal to the  

with orthonormality:

• The final state (which is not part of the same multiplet) can be obtained by  
    requiring it to be orthogonal to         and  

SINGLET
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★ It is easy to check that         is a singlet state using ladder operators          

which confirms that                                               is a “flavourless” singlet

•  Therefore the combination of a quark and anti-quark yields nine states  
    which breakdown into an OCTET and a SINGLET

• In the language of group theory: 

★ Compare with combination of two spin-half particles
TRIPLET of spin-1 states: 

spin-0 SINGLET: 
•  These spin triplet states are connected by ladder operators just as the meson 
   uds octet states are connected by SU(3) flavour ladder operators
•  The singlet state carries no angular momentum – in this sense the 
   SU(3) flavour singlet is “flavourless”
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PSEUDOSCALAR MESONS (L=0, S=0, J=0, P= –1 )

VECTOR MESONS (L=0, S=1, J=1, P= –1 )

•Because SU(3) flavour is only approximate 
  the physical states with                         can be 
  mixtures of the octet and singlet states.  
  Empirically find:

•For the vector mesons the physical states 
  are found to be approximately “ideally mixed”:

MASSES

singlet
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Combining uds Quarks to form Baryons
★ Have already seen that constructing Baryon states is a fairly tedious process  
     when we derived the proton wave-function. Concentrate on multiplet structure 
     rather than deriving all the wave-functions.

• First combine two quarks: 

SYMMETRIC ANTI-SYMMETRIC

★Yields a symmetric sextet and anti-symmetric triplet:

★ Everything we do here is relevant to the treatment of colour

Same “pattern” 
as the anti-quark 
representation 
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•  Now add the third quark:

•  Best considered in two parts, building on the sextet and triplet. Again concentrate  
   on the multiplet structure (for the wave-functions refer to the discussion of proton   
   wave-function).

❶ Building on the sextet:

Symmetric  
 Decuplet

    Mixed  
Symmetry  
    Octet
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★ In summary, the combination of three uds quarks decomposes into

      Totally 
Anti-symmetric 
       Singlet

•  Just as in the case of uds mesons we are combining              and again 
    obtain an octet and a singlet

❷ Building on the triplet:

    Mixed  
Symmetry  
    Octet

• Can verify the wave-function 
    is a singlet by using ladder operators, e.g.  

Very Important for 
following discussion 
of COLOUR
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BARYON DECUPLET (L=0, S=3/2, J=3/2, P= +1 )

Σ(1318)

Mass in MeV

Ξ(1384)

Δ(1232)

Ω(1672)

★ The baryon states (L=0) are:  
• the spin 3/2 decuplet of symmetric flavour and symmetric  
   spin wave-functions 

Baryon Decuplet

★ If SU(3) flavour were an exact symmetry all masses would be the same 
               (broken symmetry)
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BARYON OCTET (L=0, S=1/2, J=1/2, P= +1 )

939

Σ(1193)

Mass in MeV

Λ(1116)

Ξ(1318)

★ The spin 1/2 octet is formed from mixed symmetry flavour and 
     mixed symmetry spin wave-functions  

★ NOTE: Cannot form a totally symmetric wave-function based on the  
                 anti-symmetric flavour singlet as there no totally anti-symmetric    
                 spin wave-function for 3 quarks

Baryon Octet

See previous discussion proton for how to obtain wave-functions 
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Summary

★ Considered SU(2)  ud  and SU(3) uds flavour symmetries

★ Although these flavour symmetries are only approximate can still be 
     used to explain observed multiplet structure for mesons/baryons

★ In case of SU(3) flavour symmetry results, e.g. predicted wave-functions 
     should be treated with a pinch of salt as  

★ Introduced idea of singlet states being “spinless” or “flavourless”

★ In the next handout apply these ideas to colour and QCD…
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Appendix: the SU(2) anti-quark representation
Non-examinable

• The quark doublet                    transforms as 

• Define anti-quark doublet 

Complex 
  
conjugate

• Express in terms of anti-quark doublet

• Hence      transforms as

*
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•  In general a 2x2 unitary matrix can be written as

•  Giving

•  Therefore the anti-quark doublet

 transforms in the same way as the quark doublet

★ NOTE: this is a special property of SU(2) and for SU(3) there is no 
     analogous representation of the anti-quarks

返回


