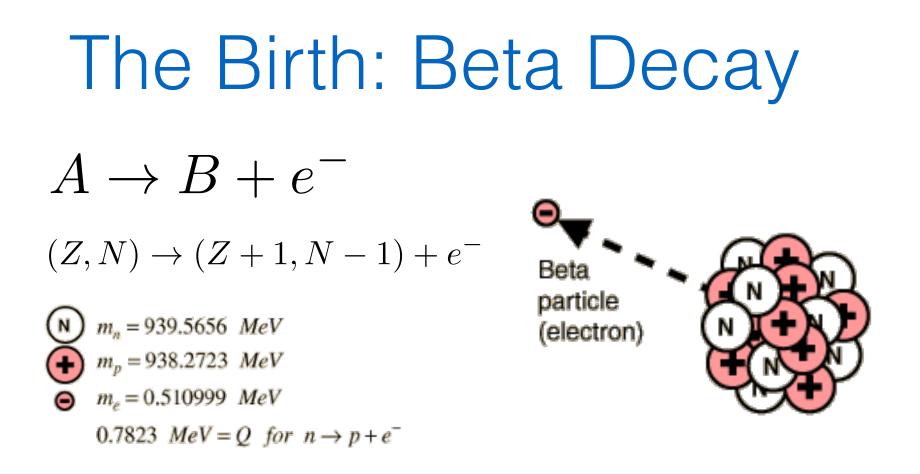
粒子物理

19. 宇称和弱相互作用

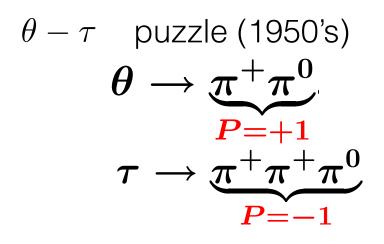
参考书: 《Introduction to Elementary Particle Physics 》 by Alessandro Bettini (Chapter 03)



The conservation of Energy and momentum requires the electron have a single value of energy.

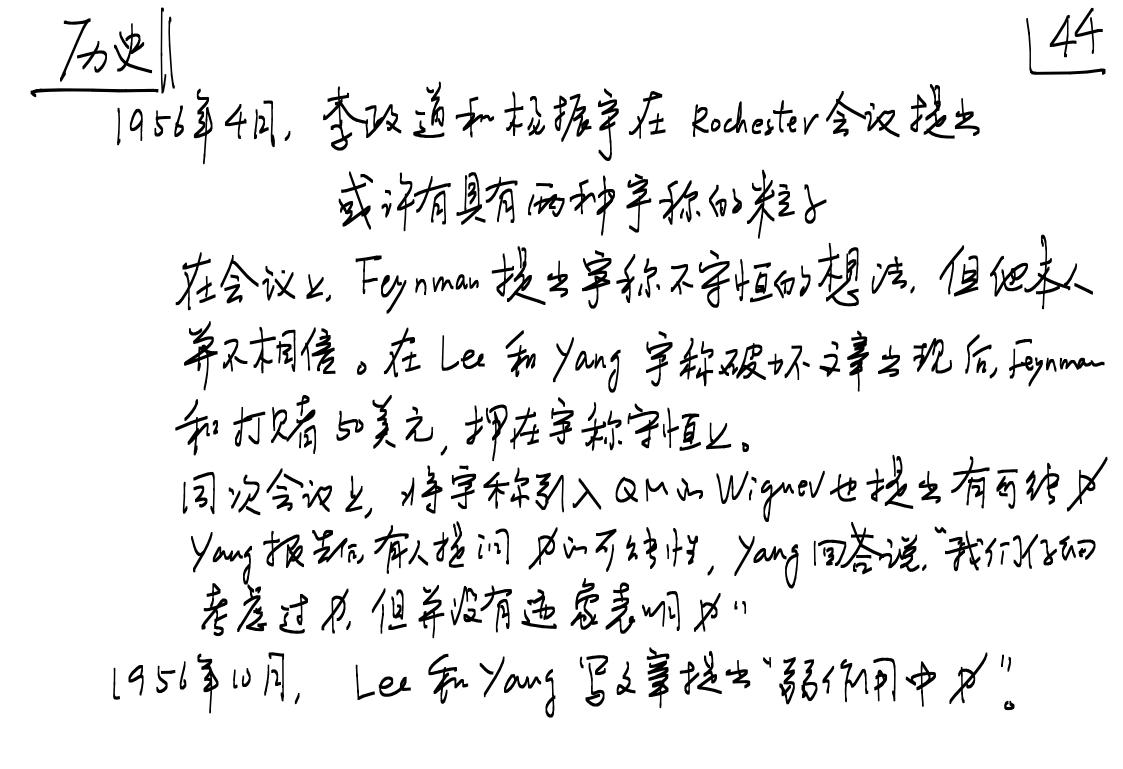
Parity Violation

Parity conservation had been assumed, almost without question



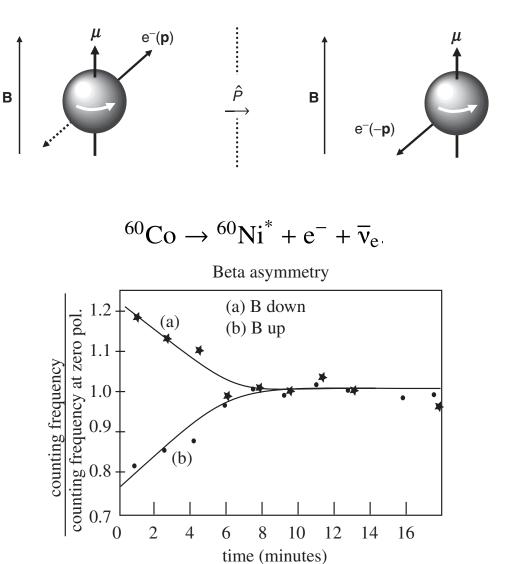
Two particles with same mass, charge, spin, lifetime, but different decay modes and parity

Lee, Yang (1956)



Parity Violation





两组独立实验(1957)

Experimental Test of Parity Conservation in Beta Decay*

C. S. WU, Columbia University, New York, New York

AND

E. AMBLER, R. W. HAYWARD, D. D. HOPPES, AND R. P. HUDSON, National Bureau of Standards, Washington, D. C. (Received January 15, 1957)

TN a recent paper¹ on the question of parity in weak ▲ interactions, Lee and Yang critically surveyed the experimental information concerning this question and reached the conclusion that there is no existing evidence either to support or to refute parity conservation in weak interactions. They proposed a number of experiments on beta decays and hyperon and meson decays which would provide the necessary evidence for parity conservation or nonconservation. In beta decay, one could measure the angular distribution of the electrons coming from beta decays of polarized nuclei. If an asymmetry in the distribution between θ and $180^{\circ} - \theta$ (where θ is the angle between the orientation of the parent nuclei and the momentum of the electrons) is observed, it provides unequivocal proof that parity is not conserved in beta decay. This asymmetry effect has been observed in the case of oriented Co⁶⁰.

Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon*

> RICHARD L. GARWIN,[†] LEON M. LEDERMAN, AND MARCEL WEINRICH

Physics Department, Nevis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson, New York, New York (Received January 15, 1957)

L EE and Yang¹⁻³ have proposed that the long held space-time principles of invariance under charge conjugation, time reversal, and space reflection (parity) are violated by the "weak" interactions responsible for decay of nuclei, mesons, and strange particles. Their hypothesis, born out of the $\tau - \theta$ puzzle,⁴ was accompanied by the suggestion that confirmation should be sought (among other places) in the study of the successive reactions

$$^{+} \rightarrow \mu^{+} + \nu, \qquad (1)$$

$$\mu^+ \longrightarrow e^+ + 2\nu. \tag{2}$$

They have pointed out that parity nonconservation implies a polarization of the spin of the muon emitted from stopped pions in (1) along the direction of motion and that furthermore, the angular distribution of electrons in (2) should serve as an analyzer for the muon polarization. They also point out that the longitudinal polarization of the muons offers a natural way of determining the magnetic moment.⁵ Confirmation of this proposal in the form of preliminary results on β decay of oriented nuclei by Wu *et al.* reached us before this experiment was begun.⁶

Parity: inversion of the three spatial coordinate axes R (=) R mimor The Poperation $\vec{s} \rightarrow \vec{s}$ Scalar -> scalar Pseudo-scalar - pseudo-scalar Vector - vector Axial vector - Axial vector

Intrinsic Parity (simple parity)
The eigenvalue
$$p$$
 of \overline{P} in the rest frame of a particle
either Positive (+) or Negative (-)
Parity application on a wave function
 $\widehat{P} \Psi(\vec{v}) = \Psi(-\vec{v})$
For a system \widehat{H}
 $(\widehat{H}, \widehat{P}] = 0 \implies Povity conserved$
 \overline{F}_{i} \overline{F}_{i} \overline{F}_{i}
 \overline{F}_{i} \overline{F}_{i} \overline{F}_{i} \overline{F}_{i} \overline{F}_{i}
 \overline{F}_{i} \overline

* Party of Photon JP = 1- $\Delta l = \pm |$ (Electric dipole Atomic radiation Two levels have opposite parities DED (EM) conserved Davity $\Rightarrow P(initial) = P(find) \times P(g)$ => P(y)=-|

$$\begin{array}{l} & \forall Parity \ ef \ a \ two - particle \ system \\ & \forall (\vec{p}, -\vec{p}) = \forall (\vec{p}, 0 \ d) = (\vec{p}, 0 \ d) \\ & \forall (\vec{p}, -\vec{p}) = \forall (\vec{p}, 0 \ d) = (\vec{p}, 0 \ d) \\ & \forall \vec{p}, \vec{p}, \vec{p} \\ & |\vec{p}| \\ \\ & |\vec{p}| \\ \\ & = \sum_{\theta \neq q} |\vec{p}, 0, \varphi\rangle \ \langle \vec{p}, 0, \varphi| |\vec{p}| \\ & = \sum_{\theta \neq q} \forall_{\theta}^{*m}(0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & \forall m \ (0, \varphi) \ \xrightarrow{P} \forall_{\theta}^{*m}(\tau, 0, \tau, \tau, \varphi) = (-\tau)^{\theta} \forall_{\theta}^{*m}(0, \varphi) \\ & = \sum_{\theta \neq q} |\vec{p}, lm\rangle = P_{A} P_{B} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \tau, \tau, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} \sum_{\theta \neq q} \forall_{\theta}^{*m}(\tau, 0, \varphi) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (-\tau)^{R} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} (\vec{p}, \theta) |\vec{p}, -\vec{p}\rangle \\ & = \underbrace{P_{A} P_{B} ($$

-

2) Fermin - Aut: fermion pair
The two intrinsic parities are opposite

$$= \begin{array}{c} P(f) \times P(\overline{f}) = -1 \\ If l is the orbit momentum, \\ then P(f\overline{f}) = (-1)^{l+1} \\ \hline 12^{l} & : \ \overline{find} \ T^{P} \ for a \ spin-\frac{1}{2} \ particle \ and \ its \ art: particle \\ if they are in \ an \ S-wave \ ov \ P-wave \\ \hline 12^{t} & I \\ \hline 12$$

* Parity Violation in weak interaction Ve: deutron neutrino $S=\frac{1}{2}$, $S_2=\pm\frac{1}{2}$ Z_{*p} . Data: $V_e \xrightarrow{\overrightarrow{p'}} \sqrt{\overrightarrow{\neg x}}$ $\overleftarrow{\varsigma_{z=-/z}} \sqrt{\overrightarrow{\neg x}}$ neutrin » is lefe-hoad Ve => V SZ=Y2 Yight-handed & X (P(ve): P→-P. Sz→Sz → P(F Ke)=(F Ke) D Weak int is not invariant under Spatial inversion (parity violation) Nut observed!

Spin-Parity of
$$\pi$$
 meson
(1) Spin of π meson
 $\pi^{+}d \rightarrow pp / pp \rightarrow \pi^{+}d$
detailed balance principle
 $1mif|^{2} = 1Mfil^{2}$
 $\Rightarrow \frac{\nabla(pp \rightarrow \pi^{+}d)}{\nabla(\pi^{+}d \rightarrow pp)} = 2 \frac{(2S\pi^{+1})(2Sd+y)}{(2Sp^{+1})^{2}} \frac{p_{1}^{2}}{p_{1}^{2}} = \frac{3}{2}(S\pi^{+}l)\frac{p_{1}^{2}}{p_{1}^{2}}$
 $\Rightarrow \frac{S\pi^{+}}{\nabla(\pi^{+}d \rightarrow pp)} = 2 \frac{(2S\pi^{+1})(2Sd+y)}{(2Sp^{+1})^{2}} \frac{p_{1}^{2}}{p_{1}^{2}} = \frac{3}{2}(S\pi^{+}l)\frac{p_{1}^{2}}{p_{1}^{2}}$
 $\Rightarrow \frac{S\pi^{+}}{\nabla(\pi^{+}d \rightarrow pp)} = 2 \frac{(2S\pi^{+}l)(2Sd+y)}{(2Sp^{+}l)^{2}} \frac{p_{1}^{2}}{p_{1}^{2}} = \frac{3}{2}(S\pi^{+}l)\frac{p_{1}^{2}}{p_{1}^{2}}$
 $\Rightarrow S\pi^{+} = O$
In $e^{+}e^{-}/pp/pp$ collider at high Energy (Ean > 10 GeV)
 $\pi^{+}, \pi^{-}, \pi^{0}$ are abudantly produced in equal number
 $\Rightarrow S\pi^{+} = S_{\pi^{0}} \Rightarrow S_{\pi^{-}} = 0$

2) Parity of
$$\pi$$
 meson
low-energy π^- absorption in deuterium
 $\pi^- d \rightarrow nn$
Initial $\pi^- d \rightarrow nn$
Initial $\pi^- d \rightarrow nn$
Initial $\pi^- d \rightarrow nn$
 $\exists n:tial (\pi^- d) \quad d = 1 \quad d = 0 \quad d = 0 \quad (s-ware) \quad (s-ware$

(P24

$$P(\pi - d) = P(\pi) P(d) (-1)^{l=0} (s-wave)$$

$$P(t - d) = P(\pi) P(n) (-1)^{0} = t |$$

$$= 0 P(\pi - d) = P(\pi - 1) = P(nn) = -1$$

$$= -1$$

$$= 1 P(\pi - has negative partex$$

$$P(\pi - 1) = P(\pi - 1) = -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

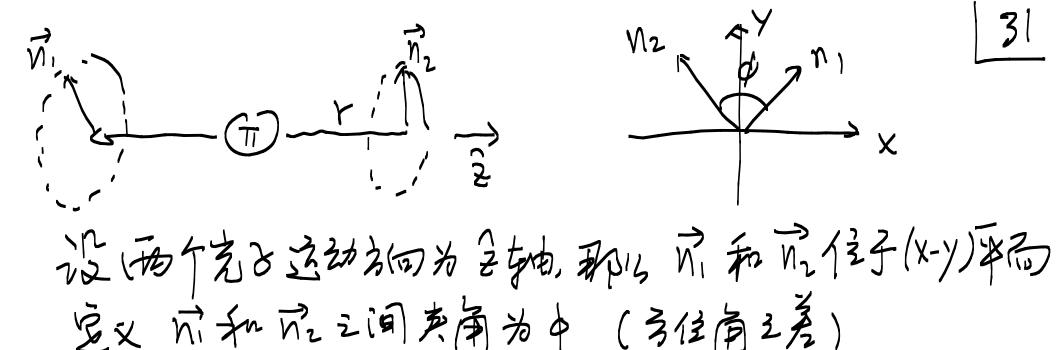
$$= -$$

Even though one can verify the parity of Ti indirectly 27 from other experiments, one still needs to test it directly! Strength of Im12 hormalized to T-1Y Diagram TL°-Decay Br 99% =0TI -> 28 $d = \frac{1}{137}$ 1.2% TI" -> Yete 3×10-5 $T_{i}^{o} \rightarrow e^{\dagger}e^{-}e^{\dagger}e^{-}$ < 1.6×10-6 x ² =CE T1 -> 2808 x² -16772 10-7 $= 0 \sum_{e}^{e^{+}}$ $T \rightarrow e^{\dagger}e$ $\pi^{\circ} \rightarrow \gamma \gamma$

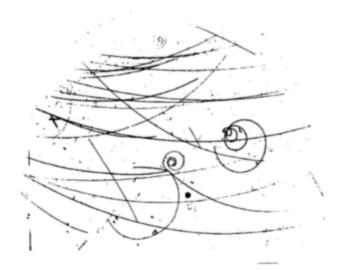
中世Pin(Ti)的自旋和寻称 TIO-> 88 r ZI (1) TTO 国格不为1 (Landau-Yang theorem, 1950) 田蓉波或和雨雨花的标识差到和到 22 4 BR 来构造,别小学为充的量已 田老波子教之民民和市的线性教 如果SII-=1(或pin是完善玻色的, 部15 ③双克的教子—》 乾燥教建小报色-爱剧新现统计 有三种可称性 $\vec{k} \iff -\vec{k}$ B-E. ok, but 花豆=花豆=の ならいふたろいなける (3) $\vec{k} \times (\vec{z_1} \times \vec{z_2}) = \vec{z_1} (\vec{k} \cdot \vec{z_2}) - \vec{z_2} (\vec{k} \cdot \vec{z_1})$

(P29)所M, TO的自旋不为! ete (35,) 7 27 Landau-Yang theorem. 银镜为的天量波色子的表型到而下完全,例如 Z° +> ZY 2) Tr°字称 (TT°→88) 末京波王教必须是了==原闭,并且比波圣教必须是每代的机会 的线性组合 Ø Er. Ez even Pavity => TT° Z Scalar $(\vec{E_1} | | \vec{E_2})$ @ (Eix Ez) Ki odd Parity => TI & pseudo-scalar $(\vec{\epsilon_1} \perp \vec{\epsilon_2})$ 所则我们不必通过充分和他买董菜则量下的字称,并验证 而是有标介8,并不是标查行子 ⇒ Troh内栗字称为(-1)

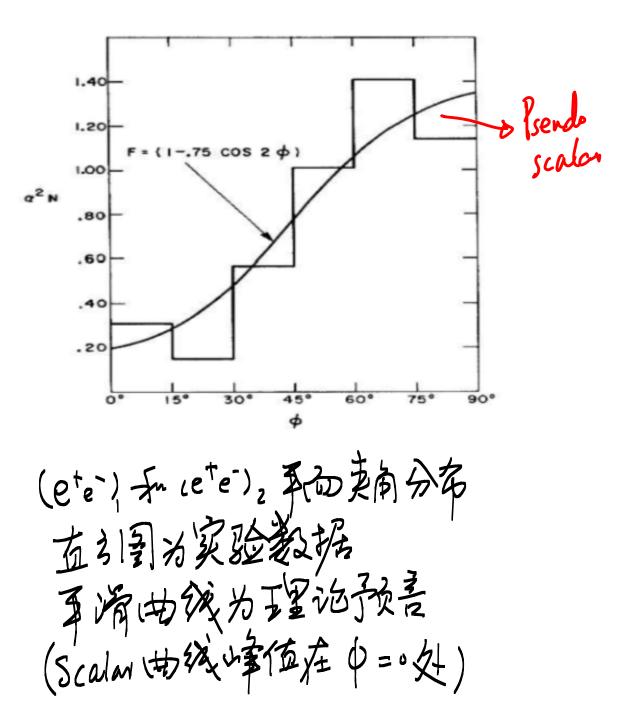
TT ~> 8 * 8 * > et e = et e (Decay plane correlation) X)双克子叔化测量具有地谈性 *) Steinberger (Plano et al, PRL3, 525 (1959) ; Samius et al, Phys. Rev. 126,1844 (1962)) 30000 12 TI > 8 8 > ete ete (internal conversion) 一到两个正负电动动的平面"论住"中间李的艺动和水摇息 To more Tro 正负电公司的公为(Pe+× Pe-13)(四. 因为 Pe++Pe==Pe) 所以 Pi 住于 (e+-e), 平面, 这世圣味着 (et-e), 平面的波向 方向-生姜五于Pi、另-他(e=e), 平面; 何世季赶了Pi、



 (引为 Scalar: $\vec{E_1} \cdot \vec{E_2}$ 即 $\vec{E_1} \cdot \vec{E_2}$ ⇒ $\frac{d\sigma}{d\phi} \simeq \cos^2 \phi$ pseudo-scalar: $(\vec{E_1} \times \vec{E_2}) \cdot \vec{K_1}$ 萨 $\vec{E_1} \perp \vec{E_2}$ ⇒ $\frac{d\sigma}{d\phi} \propto \sin^2 \phi$



 $\neg II^{D} \rightarrow j^{*} j^{*} \rightarrow e^{+} e^{-} e^{+} e^{-}$ in a hydrogen Bubble Chamber at Nevis LAB



希格斯程子的 CPHI短测量 [125 GeV, H→88] (rate too small) H (ZZ* decay plane correlation) L+ Q cos \$ \propto (cp-eren) α | t b $8\hat{m}$ φ (CP-odd)

X Puzzle: 艺的校园性 书 TP 是保寐? 134 r st to to y 银旗辊合 ST = -2,0,2 从 了= 記+了 => 見必须是偶数 MM 28系统的字称 是 (-1) (-1) = (-1 及时非子 the transversality of the photon dues NOT imply that in the 28 system, the spin state has to be even under pavity T R R 角动童守恒宴节双克的Helicity空为 RE或LL 但字称本征容为 RR+LL (pavity even) RR-LL (pavity odd) 15, 5/12 AL

$$\begin{aligned}
\overline{U}^{\circ} \rightarrow 2\gamma \quad t_{\mathcal{D}}^{\circ} \sqrt{2} \quad t_{\mathcal{E}}^{\circ} \neq \frac{1}{2} \\
2\gamma \text{ state can be written as} \\
12\gamma &= \int d^{3}p \quad \chi_{ij}(\vec{p}) \quad \underline{a}_{i}^{\dagger}(\vec{p}) \quad a_{j}^{\dagger}(-\vec{p}) \quad |0\rangle \\
\gamma \neq \pm \pi \approx \\
\frac{1}{2} \sqrt{2} \quad \chi_{ij}(\vec{p}) \quad \underline{a}_{i}^{\dagger}(\vec{p}) \quad \underline{a}_{j}^{\dagger}(-\vec{p}) \quad |0\rangle \\
\gamma \neq \pm \pi \approx \\
\frac{1}{2} \sqrt{2} \quad \chi_{ij}(\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad |0\rangle \\
\gamma \neq \pm \pi \approx \\
\frac{1}{2} \sqrt{2} \quad \chi_{ij}(\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad |0\rangle \\
\gamma \neq \pm \pi \approx \\
\frac{1}{2} \sqrt{2} \quad \chi_{ij}(\vec{p}) = \sqrt{2} \quad \chi_{ij}(\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(\vec{p}) = \sqrt{2} \quad \underline{a}_{ij}^{\dagger}(\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a}_{ij}^{\dagger}(\vec{p}) \quad \underline{a}_{ij}^{\dagger}(-\vec{p}) \quad \underline{a$$

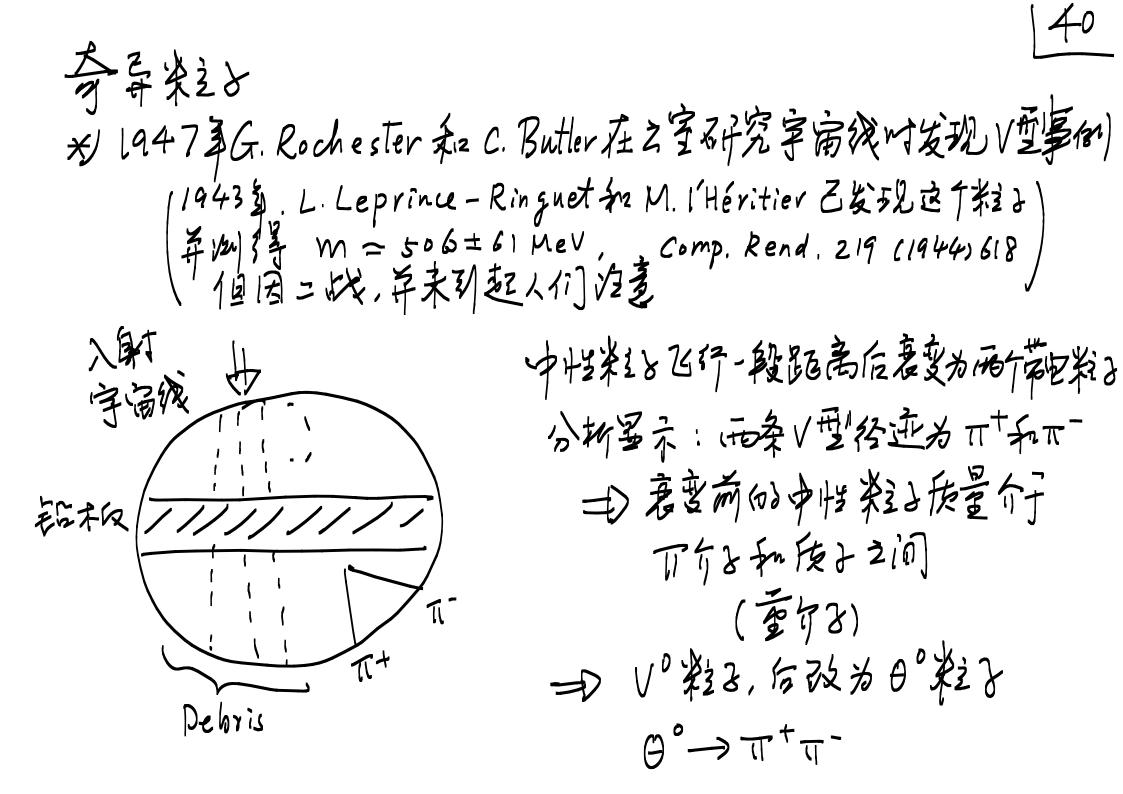
 $\mathcal{F}_{4}\mathcal{M} = \int d^{3}p \, \mathcal{X}_{ij} (\vec{P}) \, Pa_{i}^{\dagger}(\vec{P}) \, P_{j}^{\dagger}(\vec{P}) (\vec{P}) \, P_{j}^{\dagger}(\vec{P}) (\vec{P}) (\vec{P})$ $= \int d^{3}p \chi_{ij}(\vec{p}) \alpha_{i}^{\dagger}(-\vec{p}) \alpha_{j}^{\dagger}(\vec{p}) lo \rangle$ $= \int d^{3}p \, \chi_{ij}(\vec{P}) \, \alpha_{i}^{\dagger}(\vec{P}) \, \alpha_{j}^{\dagger}(\vec{P}) \, |0\rangle$ 这意味着对于希P=1克、从了(一下)=+X订(下) $= \sum \chi_{ij}(\vec{p}) = \int A \delta_{ij}, P = +1$ B Eijk Pk, P = -1 因为 前颌子的是百的病。 所以上面注意啊 p=+1,双克子板低量子行 p=-1,双克子林化完量查

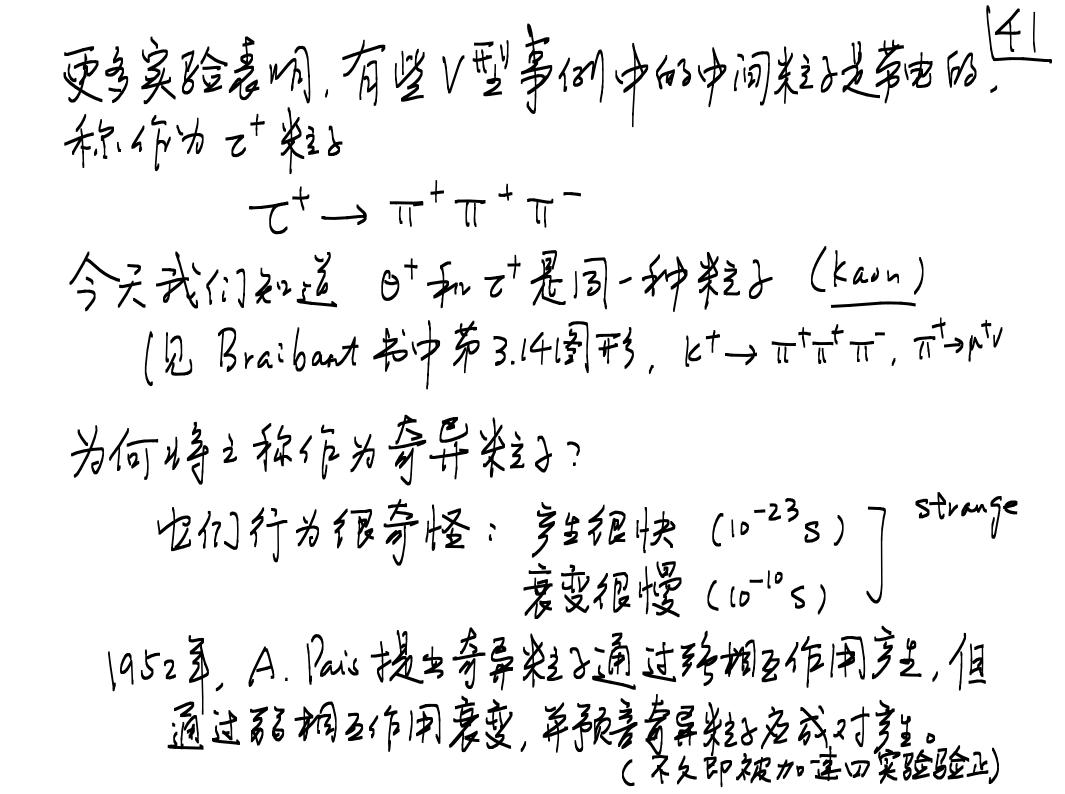
36

37 IL->88 in an Effective Lagrangian Denote Tt° as q From Loventj invariance $\mathcal{L}_{eff}^{(1)} = \phi F_{\mu\nu}^{(a)} F^{\mu\nu} c_{\mu\nu} \sim \phi \left(\vec{E}_{a} \cdot \vec{E}_{b} - \vec{B}_{a} \cdot \vec{B}_{b} \right)$ scalar pseudo Leff = $\varphi \in \mathbb{E}_{\mu\nu\rho\sigma} F^{\mu\nu(a)} F^{\rho\sigma(b)} - \varphi \left(\overrightarrow{E_{a}B_{b}} + \overrightarrow{B_{a}E_{b}} \right)$ scalar 在字标变核下 产一户, 了, 了一, 了, 所以上的是保守和、上的龙寺宇和 如果相邻间不连小亨彩、则我们无法确定中学系。 よう大好+ 上午 => [ranity 破坏

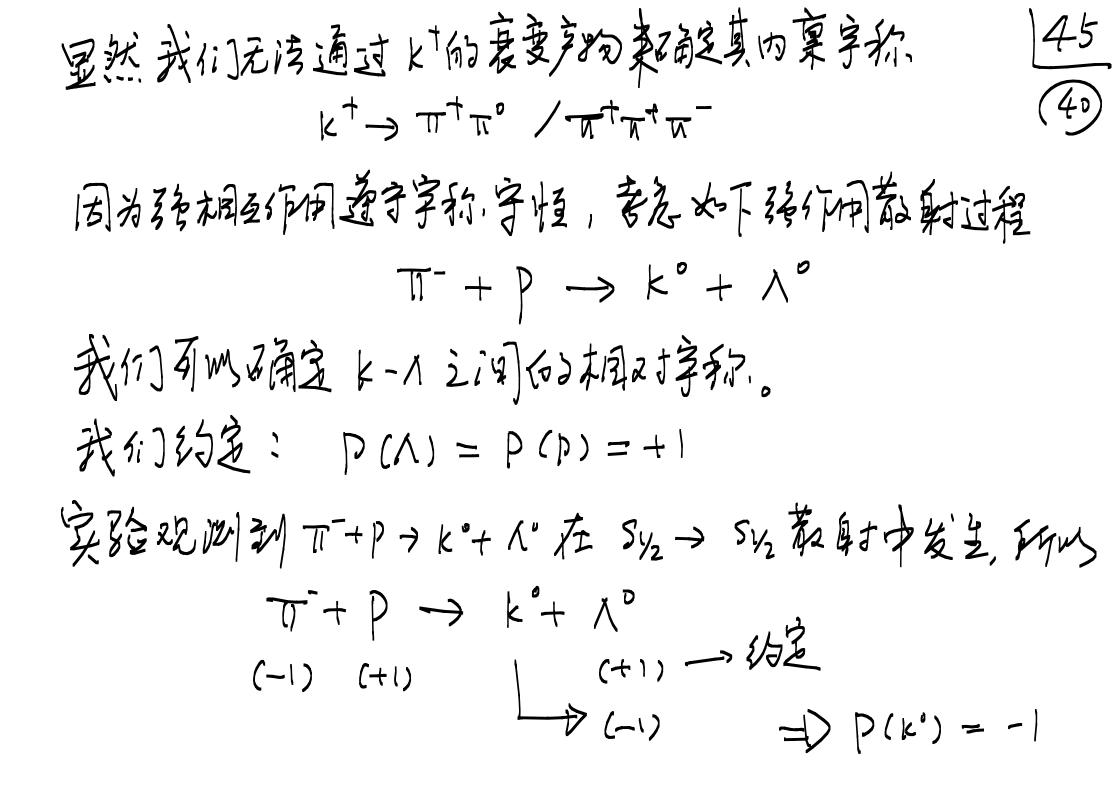
Parity of Particles & antiparticles	38
* 劳莱子的内禀字称取决于约定,但劳莱子和及费莱子之间的和	对字称
却是可以观测的沟理量 * Dirac的爱美的理论指义爱美的和友爱美的具有相反的内架	学校
一記 破 笑(建雄和 Shaknov 在正定电子偶要中验证 * 正定电子偶素(positronium): et和er 组成的类系的束缚态 基态为 'So (S-wave, 总能=0, 点(Al-Jt))	2 (1950) Wu& Shaknov
基态为 'So (S-wave, 总住=0, $d_{2}(A_{1}-J_{1})$) eter ('So) $\longrightarrow 28$ 类(Mb子 $\pi^{o} \rightarrow 28$	Phys. Kev 17, 136(1950)
$[Z] \not \exists P(e^{+e^{-}}) = (-1)^{l} \underbrace{P(e^{+}) P(e^{-})}_{==} \stackrel{!S_{o}}{=} P(e^{+}) P(e^{-}) = P(2y)$	
所以实验上检验而个艺的私化关量关联可以帮助我们的	则量月(2分)
$\vec{E_1} \parallel \vec{E_2} \implies P(2\gamma) = +1 \implies P(e^+) = P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \perp \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \mid \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \mid \vec{E_2} \implies P(2\gamma) = -1 \implies P(e^+) = -P(e^-) \times \vec{E_1} \mid \vec{E_2} \mid \vec{E_1} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_1} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_2} \mid \vec{E_1} \mid \vec{E_2} \mid $	

	家家子园	39
	1924 2, O. Laporte vizzin [mor P	c: j = - Pcf j
	Mitzz Laporte rule:	
	栗、草艺、辐射过程中的字标字恒荣	21]
2)	1927年, Eugene Wigner 论M Laporte rule起源于	电磁相圣
	的原产方在手对种性	
	一书将经典的左右对称性应用在量子过程	
3)	1949年, Weak force 被提出时,人们自然地说	为弱胡豆
	御司也遵守左右对新档	

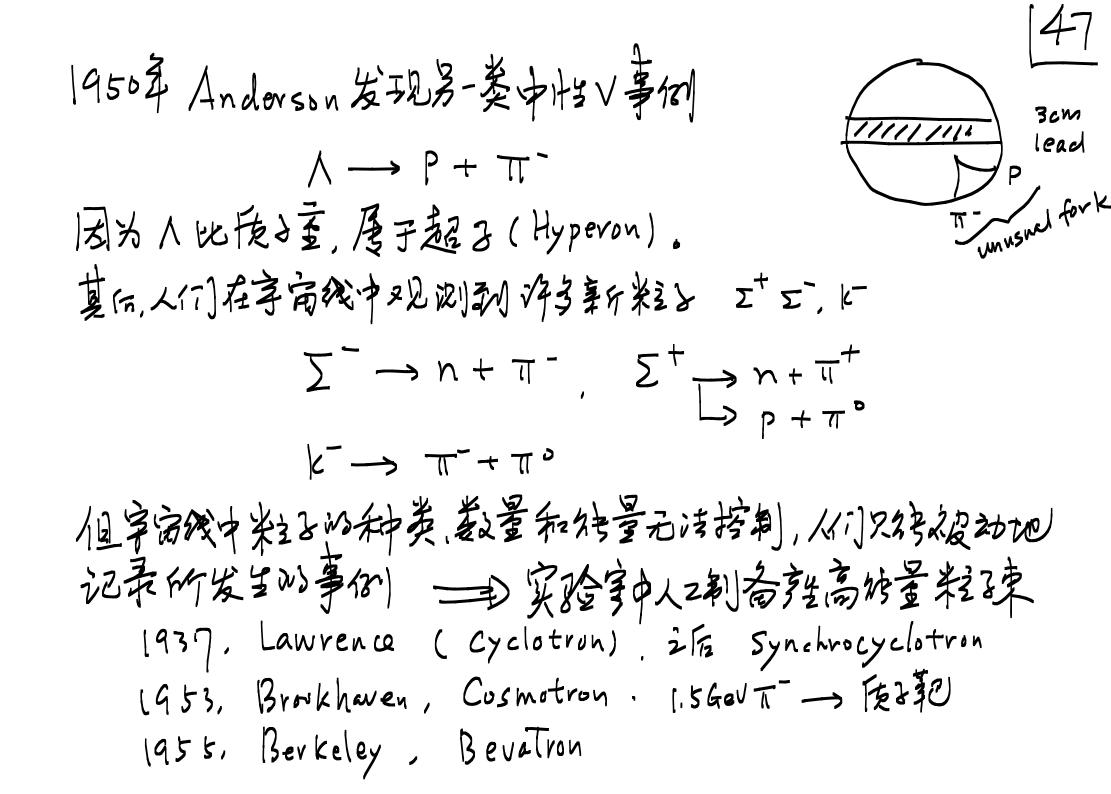


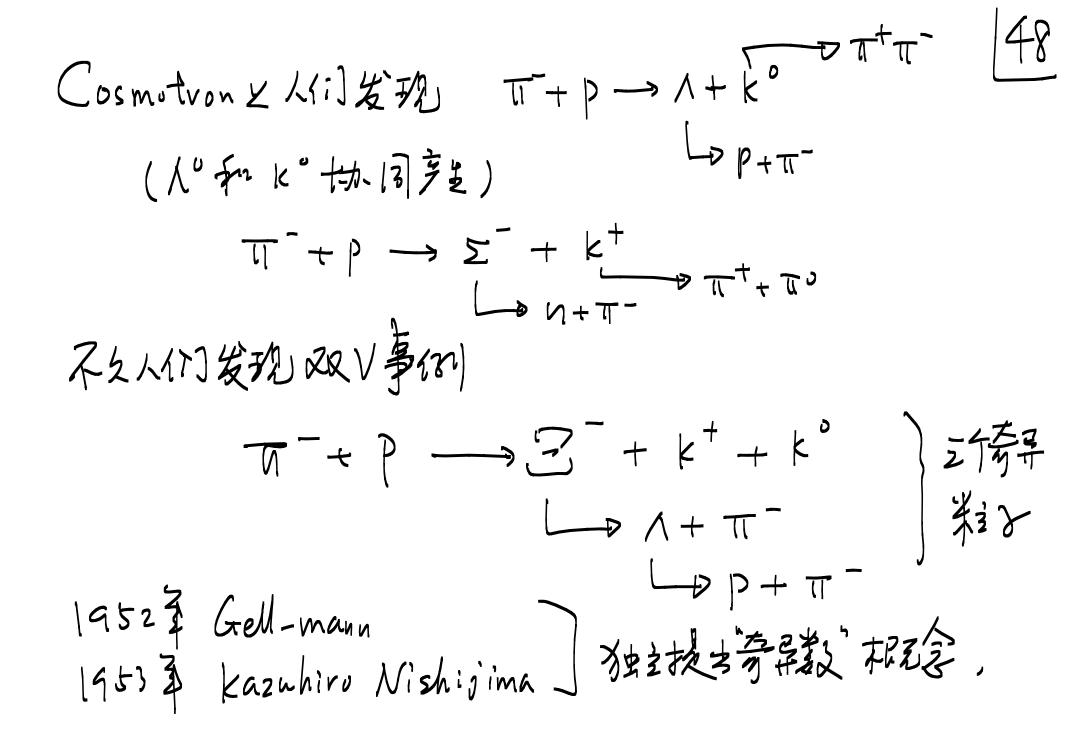


43 2) Consider で→π+π+π 我们将短分的(π+π+) 子系统 fn π f (35) $\frac{\theta}{T} = \frac{\theta}{L} = \frac{1}{T} + \frac{1}$ 令田村1-2间的轨道角动量别 而和(11+1+)后心系的相对轨道角动量为上 因为 t 自适为 D J St = Z+I, MM L=L, MATER 到零自适 | L-l 1 ≤ S ≤ L+l 1953 Dalitz 因此来至宇称为 提出) p(t)=-1 [P(0+)=+1 $(-1)^{l+l} (-1)^{3} = -1 \implies P(\tau^{+}) = -1$ 综心所述,如果宇标守恒,那么日和一个不能是同一代表。 Gfr 7 2 - 1 # 28 李政道和杨振宁在1956年提出"貂相王作用破坏争称 现标作为 Kaon



人的字称:无法通过其衰变产物得到 $\Lambda^{\circ} \rightarrow P + TT^{-}, \Lambda^{\circ} \rightarrow n + TT^{\circ}$ (337) 为测量心衰费过程中的享禄破坏效应,我们需要构造字称为劳的物理观测量. $(\overrightarrow{P_{T}} \times \overrightarrow{P_{\Lambda}}) \cdot \overrightarrow{P_{T}} decoy$ 11 decay 检验 < (PTTin × Pr). PTT decuy > = 0 一个哀受过程中学标跟坏!





A HR (strongeness) *) 承報的病毒教"是教) 普通彩子 S=> *) 承報的有益教"是教) 普通彩子 S=整教 X) 奇异教的规范之相又的 *) 路相互作用中奇异数字授 S(k") =+1 $\pi^{\circ} + P \rightarrow \wedge + k^{\circ}$ 初3: 5=+1 5 = - | $\pi^+ + \eta \longrightarrow \Lambda + k^+ \longrightarrow S(k^+) = + |_S(k^-) = -1$ $\begin{aligned} \pi^{\pm} + \gamma & \rightarrow \Sigma^{\pm} + k^{\pm} \\ \pi^{-} + \gamma & \rightarrow \Sigma^{\circ} + k^{\circ} \end{aligned} \qquad S(\Sigma^{\pm}) = S(\Sigma^{\pm}) =$ $k + P \rightarrow \Xi^{\circ} + k^{\circ} \Rightarrow S(\Xi^{\circ}) = -2$

X) Exp 第六: EM中S学校, 国WBAK INT中学 -般的寿异教子喜变中 △S=-1 $\langle n \rangle \qquad \langle -, - \rangle \rightarrow \wedge + \pi^{-}$ $\wedge \rightarrow \rho + \tau$ 也有 山S=-2过程 $\Xi^{\circ} \rightarrow P + \pi^{-}, \quad \Xi^{-} \rightarrow n + \pi^{-}$ 但几乎很小, $P_{|\Delta S|=2} \ll P_{|\Delta S|=1}$ OKN ZETE

表 1.1: 奇异粒子的奇异数 S、质量 m、cτ 及其反粒子。

奇异粒子	S	$m ({\rm MeV}/c^2)$	ст	反粒子
K^+	+1	493.677 (16)	3.712 m	K^{-}
K ⁰	+1	497.614 (24)	$\begin{cases} K_S^0: 2.6842 \text{ cm} \\ K_L^0: 15.34 \text{ cm} \end{cases}$	\overline{K}^{0}
Λ	-1	1115.683 (6)	7.89 cm	$\overline{\Lambda}$
Σ^+	$^{-1}$	1189.37 (7)	2.404 cm	$\overline{\Sigma}^+$
Σ^0	-1	1192.642 (24)	$2.22 \times 10^{-11} \text{ m}$	$\overline{\Sigma}^{0}$
Σ^{-}	-1	1197.449 (30)	4.434 cm	$\overline{\Sigma}^{-}$
Ξ-	-2	1321.71 (7)	4.91 cm	Ξ+
Ξ^0	-2	1314.86 (20)	8.71 cm	$\overline{\Xi}^0$
Ω^{-}	-3	1672.45 (29)	2.461 cm	Ω^+

5