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The meaning and scope of a recent type of uncertainty relation of a very general character are
elucidated using the notions of time-indicating dynamical variables~clock variables! and
place-indicating dynamical variables~position variables!. It is shown that if the total energy
~momentum! of a system is certain, all time-indicating~place-indicating! dynamical variables are
completely uncertain. The quantum clock is discussed as an illustration of the energy–time
uncertainty relation. The relations can be successfully applied to the thought experiments that
Einstein introduced into his debate with Bohr about the uncertainty principle~s! and, in particular, to
the famous photon-box experiment. It is shown that due to this general relation the photon box can
never serve its purpose, independent of the details of the experiment. ©1998 American Association of

Physics Teachers.
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I. INTRODUCTION

In a previous paper1 it was pointed out that an uncertain
relation for energy and time of the usual ‘‘canonical’’ typ
does not exist and some of the reasons why people h
wanted to see such a relation were shown to be unfounde
was also shown that there is a general uncertainty relatio
a different type between energy and time which provide
satisfactory expression of the well-known relation betwe
the lifetime and the energy spread of a quantum state.
existence of a similar relation between the momentum o
system and its position in space was mentioned briefly. In
present paper the meaning and consequences of these
general relations will be further discussed and elucidated

As an introduction, we shall discuss in the rest of th
section yet another source of confusion about the uncerta
principle of energy and time which was not mentioned in
previous paper, namely, the analogy with Fourier analys

Niels Bohr,2,3 in particular, used the analogy with the Fo
rier analysis of a wave in space and of a time signal, resp
tively, to derive uncertainty relations by the following simp
reasoning: A wave packet of limited extension in space
time can only be built up by a superposition of a number
elementary waves with a large range of wave numbers
frequencies. IfDx and Dt are the spatial and temporal e
tensions of the wave packet, andDs andDn are the ranges o
wave numbers and frequencies, then Fourier analysis tel
that DxDs5DtDn'1. Using the de Broglie relationsP
5hs and E5hn, one arrives at the relation
DxDP5DtDE'h.4

Unfortunately, this simple ‘‘derivation’’ is a bit too
simple. To see this, let us take a closer look at the relati
between Fourier analysis and quantum mechanics.

Let f (x) be a normalized function of the space coordin
and letg(s) be its Fourier transform:

f ~x!5~2p!21/2E g~s!eisx ds,

then the widths off andg are inversely related: Ifdx is the
width of u f (x)u2, the widthds of ug(s)u2 must at least be o
the order of 1/dx. This fact can be expressed mathematica
in several ways by choosing suitable measures for the w
of a function. If we think off (x) as representing a wave i
space, the variables is the wave number. Thus, if a wave h
396 Am. J. Phys.66 ~5!, May 1998
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extensiondx in space, it must contain wave numbers in
rangeds which is at least of the order of 1/dx.

What is the counterpart of this in quantum mechanic
Since the observables of position and momentum of a sys
satisfy the commutation relation~operators are in bold type!

qp2pq5 i\, ~1!

they have continuous eigenvalues running from2` to 1`
on the real axis and, for any quantum stateuC&, the probabil-
ity amplitudes^quC& and ^puC& are Fourier transforms o
each other:

^quC&5~2p\!21/2E ^puC&e~ ipq!/\dp. ~2!

From this, there follow relations between the widths of t
probability densitiesu^quC&u2 and u^puC&u2. In particular,
taking thestandard deviationas a measure of this width, th
Heisenberg relation

DqDp> 1
2\ ~3!

can be derived. Here,

~Dq!2[E q2u^quC&u2dq2S E qu^quC&u2dqD 2

,

and

~Dp!2[E p2u^puC&u2dp2S E pu^puC&u2dpD 2

.

We note that relation~3! may also be directly obtained from
~1!.

If one introduces the notationsc(q)[^quC& and f(p)
[^puC& for the wave functions in position and momentu
space, respectively, the similarity of~2! with the Fourier for-
mula becomes complete. However, there is an impor
shift in meaning. The functionf (x) is a function of the space
coordinate, whereas the wave functionc(q)[^quC& is a
function of the eigenvalues of the position operatorq of a
material system, e.g., a point particle. Likewise,g(s) is a
function of the wave number, whereas the wave funct
f(p)[^puC& is a function of the eigenvalues of the mome
tum operatorp. @This shift in meaning is obscured if on
writes c(x) instead ofc(q) for the wave function inq
space, as is often done in the literature.#
396© 1998 American Association of Physics Teachers
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The above similarity betweenx and s, on the one hand
andq andp on the other, breaks down for energy and tim
because the energy operatorH does not have a ‘‘timelike’’
companion operator in quantum mechanics. Since the en
eigenstatesuE& form a complete set~we suppress degenera
cies!, one may consider the wave function^EuC& of a state
in energy space, but there is now no corresponding w
function of the state in ‘‘time’’ space. Hence, Bohr’s arg
ment cannot go through.

Let us instead consider thetime dependenceof the states.
The eigenstatesuE& have a very simple time dependenc
uE,t&5uE&e2 iEt/\. Expanding a stateuC& into energy eigen-
states, we may write the time-dependent state as

uC~ t !&5E e2 iEt/\uE&^EuC&dE.

Thus the time-dependent wave function of the state inq
space, say, is

^quC~ t !&5E e2 iEt/\^quE&^EuC&dE.

The left-hand side is the amplitude for finding the system
time t at positionq in space. For a fixed value ofq this
amplitude is a function of time only and we may compare
above formula with the Fourier expansion of a time sig
into its frequency components:

F~ t !5~2p!21/2E G~v!e2 ivtdv.

In this way, one still finds an analogy between energy a
frequency. Again, an ‘‘uncertainty’’ relation holds5 between
the widths ofu^quC(t)&u2 andu^quE&^EuC&u2, but the first of
these functions cannot be interpreted as a probability den
in the variablet and the interpretation of the second functi
is not straightforward.6 Moreover, unlike the functions
e2 ivt (2`,v,`), the functionse2 iEt do not form a com-
plete set of functions oft sinceE is bounded from below and
the energy spectrum may be partly discrete.

Our discussion shows that the similarity between the
certainty principles for position and momentum and for e
ergy and time is by no means as close as Bohr’s ‘‘deri
tion’’ suggests. Energy, momentum, and position a
operators in quantum mechanics and the uncertaintie
these quantities are represented as spreads of the proba
distributions u^EuC&u2, u^puC&u2, and u^quC&u2, respec-
tively. On the other hand, an uncertainty in time cannot
construed this way, and a generally valid uncertainty relat
of type ~3! does not exist for energy and time. What, thenis
the uncertainty principle for energy and time, if such a pr
ciple does indeed exist in quantum mechanics, and, in
ticular, what meaning can be given to an uncertainty in tim
In the next section we shall address both problems and
scribe an approach which is satisfactory in several respe
~i! It is completely general.~ii ! It covers the well-known
physical applications and implies uncertainty relations of
usual type.~iii ! It has a counterpart for ‘‘space’’ instead o
‘‘time’’ and allows a relativistically covariant formulation
~iv! It has interesting new applications.

In Sec. II the concept of an uncertainty in time in quantu
mechanics is introduced using the notion of time-indicat
variables orclockvariables. A corresponding uncertainty r
lation of a very general character between the uncertaint
time and the total energy of the system is shown to exist
397 Am. J. Phys., Vol. 66, No. 5, May 1998
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is discussed briefly. In Sec. III the results of the previo
section are illustrated and further elucidated using the
ample of aquantum clock. In Sec. IV analogous results ar
derived for space-indicating variables orposition variables,
the total momentum of the system now taking the place
the energy. The relation with the usual type of uncertai
relations is discussed. The main result is summarized. In S
V the new uncertainty relations are applied to an episo
from the Einstein–Bohr debate on quantum mechanics:
famous clock-in-the-box experiment.

II. UNCERTAINTY IN TIME IN QUANTUM
MECHANICS AND THE UNCERTAINTY PRINCIPLE
FOR ENERGY AND TIME

In classical as well as in quantum physics, excepting g
eral relativity, space and time are assumed to be given
fixed background for the description of physical system
Although it is plausible that the notions of infinitely extende
homogeneous and isotropic space and time are themse
abstractions somehow ‘‘derived’’ from the properties of m
terial systems like rods and clocks, they appear in the us
formulation of physical theories asgiven. For example, the
important conservation laws of energy, momentum, and
gular momentum follow from the symmetry of this space
time background under translations and spatial rotations,
spectively. Physical systems are situated in space and t
their dynamical state is characterized by dynamical variab
like position, momentum, energy, and angular momentum
the corresponding densities, which, in general, will depe
on the space–time coordinates. In quantum mechanics
dynamical variables are turned into operators. On the o
hand, the space–time coordinates are parameters in
quantum mechanics and classical mechanics; they do
correspond to operators. We shall denote the Cartesian c
dinates of a point in space–time byx1 , x2 , x3 , t. By time
we simply mean the time coordinatet.

A clock is a physical system possessing a dynamical v
able, say a pointer position, the time dependence of whic
particularly simple so that the value oft may be directly
inferred from the value of the dynamical variable. We sh
call such a variable atime-indicatingvariable orclock vari-
able. Usually, the time dependence of such a clock varia
is periodic. For example, let the direction of the hand o
clock be given by the anglef in the interval @0,2p#. In
classical physics this angle is a simple function oft:f(t)
5vt(mod 2p). The value of t can be directly inferred
(mod 2p/v) from the value off. In quantum mechanics, a
clock variable, being a dynamical variable, is represented
an operator. In an arbitrary quantum state of the clock
outcomes of a measurement of the anglef will now have a
spread and, as a consequence, there will be an uncertain
the timet. This comes about as follows. Letuf& denote the
eigenstates of the angle operatorF ~see the next section fo
a discussion of this operator and its eigenstates!. The distri-
bution u^fuC t&u2 of f values in a quantum stateuC t& at time
t, and the distributionu^fuC t1t&u2 of f values at a later time
t1t will, in general, show some overlap. This means th
from the result of a measurement ofF, the state, and there
fore the value of the time coordinate, cannot be inferred w
certainty. Here, then, we encounter an uncertainty in time
a purely quantum mechanical character: It is an uncerta
in theparameter tarising from thequantumcharacter of the
397Jan Hilgevoord
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time-indicating dynamical variables. In the following w
shall see that this kind of uncertainty is relevant in ma
physical situations.

Can we quantify this uncertainty? The uncertainty int will
clearly depend on the timet it takes for the distributions off
values at timest andt1t to become distinguishable. A mea
sure for this time will be the time it takes for the statesuC t&
anduC t1t& to become orthogonal.7 However, it is not always
practical to require total distinguishability. We shall, ther
fore, allow the two states to have some overlap. This ru
out the possibility of distinguishing them with complete ce
tainty, but it does allow one to make a distinction with
certaindegree of reliability. Let us write,uC& and U~t!uC&
instead ofuC t& and uC t1t&, whereU(t)5exp(2iHt) is the
unitary operator of the evolution in time. The operatorH is
the Hamiltonian operator of the system and we have pu\
51. Let us then definetr as the smallest time at which th
absolute value of the overlap integral between the two st
has decreased to the value 12r:

u^CuU~tr!uC&u512r, 0<r<1. ~4!

We shall callr the reliability with which the statesuC& and
U(tr)uC& can be distinguished. If the states coincide, t
reliability is 0, whereas it attains its maximum value 1 wh
the states are orthogonal. Furthermore, for a system in
state uC&, we shall say that from a measurement of so
given dynamical variable the timet may ~at best! be inferred
with an uncertaintytr with reliability r. Again, some dy-
namical variables are better suited to the task of distingu
ing two states than others;tr refers to theoptimal ones in
this respect. Alternatively, (tr)21 might be called thetime
resolutionat reliability r of the measurement. Clearly, if on
demands greater reliability from the time measurement,
resolution becomes poorer. These notions will be further
lustrated by the example in the next section. We refer to S
IV for a discussion of the analogy oftr with the notion of
resolving power in optics.

There now turns out to be a direct relationship betweentr
and the width of theenergydistribution of the state. Inserting
a complete set of energy eigenstatesuE& into the matrix ele-
ment in ~4! we find that it is the Fourier transform of th
probability densityu^EuC&u2:

^CuU~t!uC&5E u^EuC&u2e2 i tEdE. ~5!

~The integral may include a summation over discrete eig
values.! From ~5! one can derive an uncertainty relation b
tweentr and the width of the energy distribution. As a me
sure of this width one could take the standard deviationDE,
but the standard deviation is generally not a suitable mea
of the width of a quantum mechanical probability distrib
tion: It diverges in many common cases~remember that a
quantum mechanical probability distribution need not
Gaussian, its shape is quite arbitrary!.8 A suitable measure o
width may be defined as follows. LetWa

E be the size of the
smallest energy intervalW such that

E
W

u^EuC&u2dE5a.

Then,Wa
E is a reasonable measure for the uncertainty in

ergy if a is less than but close to 1. For example, ifa
50.9, thenWa

E is the smallest interval on which 90% of th
398 Am. J. Phys., Vol. 66, No. 5, May 1998
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energy distribution is situated. It can now be shown9 that

trWa
E>2\ arccosS 22a2r

a D , for r>2~12a!. ~6!

This uncertainty relation holds for all statesuC&. The only
assumptions needed for its validity are the existence of
time-translation operatorU(t) and the completeness of th
energy eigenstates. We thus find that if the system is i
state which permits the time to be inferred with an unc
tainty tr , the width Wa

E of the energy distribution of the
state cannot be smaller than is allowed by the inequality~6!.
For sensible values of the parameters, saya50.9 or
a50.8, and 0.5<r<1, the right-hand side of~6! is of the
order of\.

In fact, ~6! comprises a whole set of relations. For e
ample, taking (12r)5A1/2 anda50.9 and writingT1/2 for
the correspondingtr , one finds

T1/2W0.9
E >0.9\. ~7!

From ~4! we see thatT1/2 is the so-calledhalf-life of the
state, the~smallest! time at which the probability of finding
the system in its original state has decreased to 50%. T
~7! expresses the well-known relation between the lifetime
a quantum state and the width of its energy spectrum. T
relation is usually obtained in the approximation in which t
decay of the state is exponential, but we now see that
relation is completely general. As an extreme case, cons
an eigenstate of the energy; thenWa

E50, and by~6! tr5`,
in agreement with the fact that, in this case, nothing chang

III. THE QUANTUM CLOCK

Let us now return to our simple clock,10 having a single
hand, and let us see how the above results work out in
case. In quantum mechanics the angle-variablef is repre-
sented by an operatorF. The Hilbert space in the angl
representation consists of the square-integrable functionf
of f on the interval@0,2p#. The operators of angle and an
gular momentum are represented by~\51!

Ff ~f!5f f ~f!,

L f ~f!52 i
d

df
f ~f!.

The operatorF is self-adjoint on the whole Hilbert space
whereasL is self-adjoint on the subspace of the squa
integrable, differentiable, functions satisfyingf (0)5 f (2p).
These operators have complete, orthonormal sets of gen
ized eigenstatesuf& and um&:

Fuf&5fuf&, ^fuf8&5d~f2f8!,

L um&5mum&, ^mum8&5dm,m8 ,

where the eigenvaluef runs through the interval@0,2p# and
m50,61,62,... .

In the f representation the statesuf& and um& are repre-
sented by the wave functions^fuf8&5d~f2f8! and ^fum&
5(2p)21/2e2 imf, respectively. The situation is very simila
to that of position and momentum, except for the fact that
interval on which the functionsf (f) are defined is finite. In
particular, we have

uf&5~2p!21/2(
2`

1`

eimfum&, ~8!
398Jan Hilgevoord
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where the sum~not an integral now! runs over all values of
m.

The dynamics of the system is introduced by specify
the Hamiltonian; we putH5vL , wherev is a constant fre-
quency. With the help of~8! we find

U~ t !uf&5e2 iHtuf&

5~2p!21/2( eimf2 imvtum&

5uf2vt&. ~9!

This is precisely the behavior to be expected of the hand
an ideal clock: It rotates at constant angular velocity a
after an arbitrarily short time an eigenstateuf& of the hand
position goes over into an orthogonal state, that is, the clo
in this state, has zero uncertainty~i.e., infinite resolution! at
maximum reliability:t150. Accordingly, by~6!, the width
of the energy distribution of the statesuf& must be infinite:
Wa

E5`. This is indeed the case: The energy eigenvalues
vm, with m running over all integers; hence, the spectru
extends from2` to 1`, and all eigenstatesum& of H ap-
pear inuf& with equal amplitude.

A more realistic case is obtained if we require the ene
to be bounded. We then restrict the sum in~8! to values ofm
which satisfy the condition2 l<m< l , wherel is a positive
integer, and consider the states

uu&5~2l 11!21/2 (
m52 l

l

eimuum&, uP@0,2p#.

The wave functions in thef representation are11

^fuu&5~2p!21/2~2l 11!21/2(
2 l

l

eim~u2f!

5@2p~2l 11!#21/2
sin@~2l 11!~u2f!/2#

sin@~u2f!/2#
. ~10!

Here, use is made of the identity

(
m52 l

l

xm[
xl 11/22x2 l 21/2

x1/22x21/2 .

The functions~10! are no longerd functions off but peak
around the valuef5u and have width'2p/(2l 11). For
the time evolution we again find

U~ t !uu&5uu2vt&.

Unlike the states~8!, the statesuu& and uu2vt& overlap for
short times, but they become orthogonal after time interv
which are multiples oft52p@(2l 11)v#21 ( lÞ0). Thus
the (2l 11) states uu12pk/(2l 11)&, with k52 l ,...,l ,
form a complete set of orthonormal states in the sp
spanned by the statesum& with 2 l<m< l . Our clock, in a
stateuu&, is no longer ideal; its time resolution at maximu
reliability is t152p@(2l 11)v#21. On the other hand, the
width of the energy distribution of the statesuu& is no longer
infinite: Wa

E5(2l 11)av. Of course, the productt1 Wa
E sat-

isfies the uncertainty relation~6!.
The upshot of the above discussion is that there is

uncertainty relation between the accuracy with which
physical system can indicate time and the width of the
ergy distribution of its quantum state. This is express
quantitatively by relation~6!. This uncertainty relation doe
399 Am. J. Phys., Vol. 66, No. 5, May 1998
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not, in itself, rule out the existence of an ideal clock; it sa
only that the energy spread of an ideal clock must be infin

Note. Relations of type ~6! were first derived by
Uffink,12,13 and their meaning has been studied by Hilge
oord and Uffink8,14,15~cf. also the next section!. A discussion
of the quantum clock in much the same spirit as ours
been given by Busch.16 We may also refer to his article fo
an excellent survey of the whole subject of the uncertai
principle for energy and time.

IV. THE ANALOGY BETWEEN SPACE AND TIME

The above discussion of the uncertainty in time can
repeated, almost word for word, with respect to the sp
coordinates. For simplicity, let us consider just one sp
coordinatex. Like the time coordinate, the space coordina
must be sharply distinguished from dynamical variables
tached to a physical system and indicating the position of
system in space.17 As the simplest example, consider th
position-variableq of a point particle. The numerical relatio
between this dynamical variable and the space coordina
very simple:q5x. That is, from the value ofq the value of
x can be inferred directly. This simple relation is to be co
pared with the simple relationf5vt between a classica
clock variable and the time coordinate in Sec. II. Again,
quantum mechanics,q is represented by an operator where
x remains ac number. LetU(x)5exp(iPx) be the unitary
operator of translations in space. Here,P is the operator of
the total momentum of the system. The matrix elem
^CuU(x)uC& is the overlap integral between the stateuC&
and the space-translated stateU(x)uC&. Inserting a complete
set of momentum eigenstatesuP& we get the analogue of Eq
~5!:

^CuU~j!uC&5E u^PuC&u2ei jPdP. ~58!

One can now define an uncertaintyjr in x in the same way
as we defined an uncertainty int:

u^CuU~jr!uC&u512r, 0<r<1. ~48!

Let us calljr the ~spatial! translation widthof the state. The
translation width is a measure of the place-indicating cap
ity of the state just astr is a measure of the time-indicatin
capacity of the state. The best place-indicating states h
the smallest translation widths. In particular, the eigensta
of position variables likeq are optimal in this respect: By a
arbitrarily small translation an eigenstate ofq goes over into
an orthogonal eigenstate:U(j)uq&5uq2j&. @Compare~9!#.
Hence, for these states,j150. The position variables, there
fore, are ideal place-indicating variables of the system,
as the clock variables of an ideal clock are ideal tim
indicating variables. We have seen that the existence of id
clocks is impossible if we require the energy to be bound
The same is true of the place-indicating variables in syste
where the total momentum is bounded. On the other han
the spectrum of the total momentum is the whole real a
all position variables are ideal place-indicating variables.

From ~58! and ~48!, there follows the uncertainty relation

jrWa
P>2\ arccosS 22a2r

a D for r>2~12a!, ~68!

where the widthWa
P of the momentum distribution is define

as the smallest momentum intervalW such that
399Jan Hilgevoord
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u^PuC&u2dP5a.

The uncertainty relation~68! holds for all states under th
sole condition that the generatorP of translations in space
exists and has a complete set of eigenstates.

We now consider some consequences of~68!. Suppose
that the total momentum of the system is reasonably w
determined, i.e.,Wa

P is small. Then, the translation widthjr

of the state must be large. This implies that the spread inall
position variables must be large. Hence, it is thetotal mo-
mentum which determines whether or not the position v
ables of the system can be sharply determined. To illust
this, let us consider a system with two position variablesq
and Q, e.g., a two-particle system. The eigenstates of
total momentum can be written in the form

c~q,Q!5x~q2Q!eiP~q1Q!/2, ~11!

wherex is an arbitrary wave function and the eigenvalue
P. Note that~11! need not be an eigenstate of the mome
of the separate particles. The probability density inq is
* uc(q,Q)u2 dQ5* ux(q2Q)u2 dQ, which is uniform inq.
Evidently, the same is true forQ. Hence, if the total momen
tum is certain, bothq and Q are completely uncertain. O
the other hand, if the state is an eigenstate ofq, say, then it
has the form

c~q,Q!5d~q2a!x~q,Q!,

wherex is an arbitrary wave function. Every finite transl
tion of the whole system transforms this state into an
thogonal one; hence, the translation width of this state
zero. From~68!, it follows that the widthWa

P of the momen-
tum distribution of this state must be infinite. To verify thi
we consider the wave function of the above state in mom
tum space:

w~k,K !5~2p!21E E d~q2a!x~q,Q!e2 ikq2 iKQdqdQ

5~2p!21eikaE x~a,Q!e2 iKQdQ.

One sees thatuw(k,K)u2 depends only onK: uw(k,K)u2

5F(K). The probability of finding total momentumP is
**d(k1K2P)uw(k,K)u2 dk dK5*F(K) dK, which is in-
dependent ofP. Thus the probability distribution of the tota
momentum is uniform and, hence,Wa

P is infinite.
We conclude: If the total momentum is certain,all posi-

tion variables are completely uncertain; if at least one po
tion variable is certain, the total momentum is complet
uncertain. All this is similar to the relation between clo
variables and the total energy.

Sinceq is an ideal place-indicating variable it can be us
to reexpress the translation width of a state. For simplic
consider the one-dimensional case. Inserting a complete
of eigenstatesuq& of q into the matrix element̂CuU(j)uC&
gives

^CuU~j!uC&5E c* ~q!c~q2j!dq, ~12!

wherec(q)[^quC& is the wave function of the state inq
space. Hence, alternatively, we could have introducedjr as
the smallest displacement such thatu*c* (q)c(q2jp)dqu
512r. However, the definition~48! is more general be
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cause position variables of a system do not always exist.
example is provided by the photon.18 In such a case, defini
tion ~48! can still be used!

One may wonder what the relationship is between the
certainty relation~68! and the usual uncertainty relation~3!.
Suppose thatc(q) is a simple wave packet having a sing
pronounced peak of widtha. Then, as is clear from~12!,
jr'a for values ofr close to 1. That is, for such wav
packets, the translation width is of the same order of mag
tude as the standard deviation and other measures of
width like Wa . For such wave functions the relations~3! and
~68! are roughly equivalent. However, if the wave functio
consists of several equidistant peaks of widthb, as in an
interference pattern, then, clearly,jr'b, whereas the stan
dard deviation and measures likeWa , which are not sensi-
tive to the fine structure of the wave function, are still of th
much bigger, order of the total widtha. It follows that the
uncertainty relation~68! is essentiallystrongerthan relations
of type ~3!.

There is a close similarity between the notion of the tra
lation width and the notion of theresolving powerof an
optical system. The resolving power of an optical instrum
is defined as the minimum distance between two po
sources such that the images of the point sources forme
the instrument can still be distinguished. These images
diffraction patterns which are displaced relative to each ot
in the image plane. The usual criterion for their distinguis
ability, viz. Rayleigh’s criterion, rests on the assumption th
the patterns have a single pronounced peak. The cond
~48! may be considered as a generalization of Rayleig
criterion for the distinguishability of two states. If an optic
instrument is to have a great resolving power, the transla
width of the images it produces must be small!

Likewise, condition~4! can be seen as a generalization
the time analogue of Rayleigh’s criterion. Suppose that, fo
fixedvalue ofq, the wave function̂ quC(t)&, as a function
of t, has a simple peak of durationT. This would happen if,
for instance,^quC(t)& is a Gaussian wave packet movin
through space with negligible dispersion and passing thro
q. Then, for values ofr close to 1,tr is of the order ofT,
and from~6! it follows that the width of the energy distribu
tion of the state must be at least of the order of\/T. Thus
one recovers the well-known relation, mentioned in the
troduction, between the duration of a signal and the width
its energy or frequency spectrum. Again, if the signal ha
fine structure, condition~4! will ‘‘see’’ this fine structure and
tr will be smaller than the total width of the signal. Henc
relation ~6! is stronger than the usual relationship betwe
the duration of a signal and its frequency spread.

We may summarize the results of this section as follow
The uncertainty relation~6! expresses, for a given quan

tum state, the reciprocal relationship between the sprea
the total energy of the system and the accuracy with wh
the time-indicating dynamical variables~‘‘clock variables’’!
of the system can indicate the time.

The uncertainty relation~68! expresses, for a given quan
tum state, the reciprocal relationship between the sprea
the total momentum of the system and the accuracy w
which the place-indicating dynamical variables~‘‘position
variables’’! of the system can indicate the place.

Here, ‘‘time’’ and ‘‘place’’ refer to the space–time refer
ence frame with respect to which the system is describe
400Jan Hilgevoord
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In particular, it follows that if the total energy~momen-
tum! of a system is known precisely, all clock variables~po-
sition variables! are completely uncertain.

Finally, we note that in arelativistic quantum theory,
space and time are united into space–time, and the coo
natesx1 , x2 , x3 , t are the components of a 4-vector. Lik
wise, the operatorsP1 , P2 , P3 of translations in three-
dimensional space and the operatorH of translations in time
form a 4-vector operator. In this way the uncertainty re
tions ~6! and ~68! obtain a joint covariant basis.

V. THE PHOTON BOX: AN EPISODE
FROM THE EINSTEIN –BOHR DEBATE

In his contribution to the Einstein Seventieth Birthd
Volume: ‘‘Albert Einstein: Philosopher-Scientist’’3 entitled
‘‘Discussion with Einstein on Epistemological Problems
Atomic Physics,’’ Bohr gave a careful exposition of h
views on quantum mechanics. He dealt extensively with b
the uncertainty principles for momentum and position, a
for energy and time, and in particular with arguments, rai
by Einstein, which question the consistency of his~Bohr’s!
reading of these principles.19 Einstein’s stand on the issue
not completely clear. Presumably, Einstein would not ha
objected to a statistical interpretation of the principle
which the uncertainties are interpreted as spreads in the
comes of a long series of independent measurements. Bu
Bohr the principle also applies to individual quantum sy
tems. For Bohr the uncertainties symbolize the bou
within which quantities like momentum and position or e
ergy and time can be considered to be simultaneously de
mined in an individual system. Against this view Einste
advanced several counterexamples. Undoubtedly, the m
famous of these is the photon-box or clock-in-the-box
periment ~1930! pertaining to the uncertainty principle o
energy and time. There is still some discussion20 about
the question of whether Einstein directed this thought exp
ment, in the first instance, against Bohr’s interpretation of
uncertainty principle, as Bohr assumes he did, or that he
something different in mind, namely, a ‘‘locality’’ type ar
gument of the kind put forward, five years later, in the
mous Einstein–Podolsky–Rosen paper. We will not en
this discussion but follow Bohr and take the photon-box
periment as being directed against the uncertainty princ
of energy and time.

Let us recall the idea of the photon-box experiment. A b
containing some radiation has a hole in one of its wa
which can be opened and closed by a shutter controlled
clock inside the box. At a preset time the clock opens
shutter for a short interval of time during which a sing
photon escapes. In this way the time of escape of the ph
can be determined with arbitrary precision. Since energ
equivalent to inertial mass, and mass has weight, the en
of the box can be determined by weighing it in a gravi
tional field. Hence, by weighing the box before and after
escape of the photon, the energy of the photon can als
found with arbitrary precision. But this violates the unce
tainty principle of energy and time. Here, Einstein used re
tivity theory to show the inconsistency of Bohr’s interpret
tion of the quantum mechanical uncertainty principle! Bo
refuted Einstein by a famous argument in which, for his p
he used the relativistic effect of a gravitational field on t
rate of the clock in the box. I reproduce his argument21 ~cf.
Fig. 1!:22
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‘‘The box,..., is suspended in a spring-balance and is f
nished with a pointer to read its position on a scale fixed
the balance support. The weighing of the box may thus
performed with any given accuracyDm by adjusting the bal-
ance to its zero position by means of suitable loads. T
essential point is now that any determination of this posit
with a given accuracyDq will involve a minimum latitude
Dp in the control of the momentum of the box connect
with Dq by the relationDqDp'h. This latitude must obvi-
ously again be smaller than the total impulse which, dur
the whole intervalT of the balancing procedure, can be give
by the gravitational field to a body with massDm, or

Dp'h/Dq,TgDm ~a!

whereg is the gravity constant. The greater the accuracy
the readingq of the pointer position, the longer must, co
sequently, be the balancing intervalT, if a given accuracy
Dm of the weighing of the box with its content shall b
obtained.

Now, according to general relativity theory, a clock, wh
displaced in the direction of the gravitational force by
amountDq, will change its rate in such a way that its rea
ing in the course of a time intervalT will differ by an amount
DT given by the relation

DT/T5c22gDq. ~b!

By comparing~a! and ~b! we see, therefore, that after th
weighing procedure there will in our knowledge of the a
justment of the clock be a latitude

DT.h/c2Dm.

Together with the formulaE5mc2, this relation again leads
to

DTDE.h,

Fig. 1. The photon box experiment.
401Jan Hilgevoord
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in accordance with the indeterminacy principle. Con
quently, a use of the apparatus as a means of accur
measuring the energy of the photon will prevent us fro
controlling the moment of its escape.’’

This ingenious argument has been applauded by many23,24

but it has failed to convince many others.25,26 It is interesting
to note that, whereas the original discussion with Einst
took place in 1930, Bohr did not publish his rebuttal un
1948 and, apparently, went on thinking about the proble
for, on the last day of his life~18 November 1962!, he
sketched the photon box on the blackboard in his home.27 It
is not my purpose, here, to analyze the argument wh
would surely be no easy task. I only remark that Bohr fix
his attention on the procedure by which the energy of the
is measuredrather than on the internal dynamics of the sy
tem. In particular, he did not apply quantum mechanics
the clock itself but only to the vertical motion of the box
center of mass, and the uncertainty principle of position a
momentum is called on to save the uncertainty principle
energy and time. Under close scrutiny Bohr’s argum
raises many questions which, in my view, have never b
satisfactorily answered.

If, however, the results of the previous sections are app
directly to the clock-shutter system, the problem gets an e
solution. The shutter may be considered as the hand
clock passing over the hole. Now, if one wants to determ
the energy of the escaping photon by a subsequent mea
ment of the energy of the box, the total initial energy of t
system must be accurately known. But from the general
sult stated at the end of the previous section it follows that
time-indicating dynamical variables of the system must th
be unsharp, and, in particular, the time when the shu
opens the hole is uncertain. Therefore, under the circ
stance that the energy of the photon can be determine
weighing the box afterwards, the time of escape is uncert
the uncertainties in energy and time being related by rela
~6!. Hence, quite independent of the way the energy of
box is measured, Einstein’s idea of violating the uncertai
principle by appealing to the conservation law of energy c
not succeed.

We note that Bohr’s relation~b! depends on the classica
redshift formula relating the time shown by a clock in
gravitational field and coordinate time.28 It is precisely the
relation between the clock time and the coordinate ti
which, in the previous sections, was found to become un
tain if the energy of the system is accurately known. Fr
this point of view the uncertaintyDT may be seen as an extr
uncertainty, arising from the way the energy is measured
addition to the uncertaintytr which, on account of relation
~6!, is already present in the initial state.

In the same article Bohr discussed a proposal of Einste
to violate the uncertainty principle of position and mome
tum by using the conservation law of momentum.29 It will
not come as a surprise that this proposal also fails on acc
of our general uncertainty relation between the total mom
tum and all place-indicating dynamical variables of the s
tem.
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