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The meaning and scope of a recent type of uncertainty relation of a very general character are
elucidated using the notions of time-indicating dynamical variableleck variabley and
place-indicating dynamical variablggosition variables It is shown that if the total energy
(momentum of a system is certain, all time-indicatiriglace-indicating dynamical variables are
completely uncertain. The quantum clock is discussed as an illustration of the energy—time
uncertainty relation. The relations can be successfully applied to the thought experiments that
Einstein introduced into his debate with Bohr about the uncertainty pririsj@ed, in particular, to

the famous photon-box experiment. It is shown that due to this general relation the photon box can
never serve its purpose, independent of the details of the experimentoggtamerican Association of
Physics Teachers.

I. INTRODUCTION extensiondx in space, it must contain wave numbers in a
In a previous papéit was pointed out that an uncertainty rar\}gﬁaﬁfi\gﬁﬁg ::Soﬁmgfs;?fotﬁh?srdiir OL:rfium mechanics?
relation for energy and time of the usual “canonical” type .. P " 9 :
v"élnce the observables of position and momentum of a system

does not exist and some of the reasons why people have . ; . h
wanted to see such a relation were shown to bg upnfoﬁnded.?f’lt'Sfy the commutation relatidfoperators are in bold type

was also shown that there is a general uncertainty relation of qp—pq=i#, D)
a different type between energy and time which provides a . . :
satisfactory expression of the well-known relation betweerf€Y have continuous eigenvalues running frem to +o
the lifetime and the energy spread of a quantum state. Th@" the real axis and, for any quantum stalfg, the probabil-
existence of a similar relation between the momentum of &Y amplitudes(q|¥) and(p|¥) are Fourier transforms of
system and its position in space was mentioned briefly. In th€ach other:
present paper the meaning and consequences of these very )
general relations will be further discussed and elucidated. <q|‘lf)=(277ﬁ)*1/2f (p|W)elPd/iqp, )
As an introduction, we shall discuss in the rest of this
section yet another source of confusion about the uncertaintifrom this, there follow relations between the widths of the
principle of energy and time which was not mentioned in theprobability densitied(q|¥)|?> and |(p|¥)|2. In particular,
previous paper, namely, the analogy with Fourier analysis. taking thestandard deviatioras a measure of this width, the
Niels Bohr?®in particular, used the analogy with the Fou- Heisenberg relation
rier analysis of a wave in space and of a time signal, respec- AdAp= 1% 3)
tively, to derive uncertainty relations by the following simple aap=2
reasoning: A wave packet of limited extension in space an¢an be derived. Here,
time can only be built up by a superposition of a number of
elementary waves with a large range of wave numbers and (Aq)zzf qz|<q|q,>|qu_(f q|<q|\1f>|2dq>
frequencies. IfAx and At are the spatial and temporal ex-
tensions of the wave packet, aAd-andAv are the ranges of
wave numbers and frequencies, then Fourier analysis tells us

2

2
that AxXAo=AtAv~1. Using the de Broglie relation® A ZEJ 2/ plw)|2d _(f ¥)|2d )
=ho and E=hv, one arrives at the relation (4p) PlCpIY)Idp PI(pI¥)[*dp| .

— ~—h 4 . . )
AxAP=AtAE~h. We note that relatioit3) may also be directly obtained from

Unfortunately, this simple “derivation” is a bit too (1)
simple. To see this, let us take a closer look at the relations 't one introduces the notationg(q)=(q|¥) and ¢(p)
between Fourier analysis and quantum mechanics. =(p|W¥) for the wave functions in position and momentum

Let f(x) be a normalized function of the space coordmatespace, respectively, the similarity (%) with the Fourier for-

and letg(o) be its Fourier transform: mula becomes complete. However, there is an important
_ shift in meaning. The functiofi(x) is a function of the space
f(X)I(ZTF)*l’zJ' g(0)e' " da, coordinate, whereas the wave functigifq)={(q|¥) is a

function of the eigenvalues of the position operatoof a
then the widths of andg are inversely related: Ibx is the  material system, e.g., a point particle. Likewiggo) is a
width of |f(x)|2, the widthdo of |g(o)|? must at least be of function of the wave number, whereas the wave function
the order of 16x. This fact can be expressed mathematically¢(p)={p|¥) is a function of the eigenvalues of the momen-
in several ways by choosing suitable measures for the widttum operatorp. [This shift in meaning is obscured if one
of a function. If we think off(x) as representing a wave in writes (x) instead of ¢s(q) for the wave function ing
space, the variable is the wave number. Thus, if a wave has space, as is often done in the literatire.
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The above similarity betweer and o, on the one hand, is discussed briefly. In Sec. Il the results of the previous
andq andp on the other, breaks down for energy and timesection are illustrated and further elucidated using the ex-
because the energy operatérdoes not have a “timelike” ample of aquantum clockin Sec. IV analogous results are
companion operator in quantum mechanics. Since the ener@lﬁ“ved for space-indicating variables position variables,
eigenstate$E) form a complete sefwe suppress degenera- the total momentum of the system now taking the place of
cies, one may consider the wave functioB|¥) of a state the energy. The relation with the usual type of uncertainty

in energy space, but there is now no corresponding wav Iar;[ions is discussed. Thel main result is slgrgmarized. In ngc.

function of the state in “time” space. Hence, Bohr's argu- Y th€ New uncertainty relations are applied to an episode
from the Einstein—Bohr debate on quantum mechanics: the

ment cannot go through. f lockein-the-b ;

Let us instead consider ttieme dependencef the states. amous clock-in-the-box experiment.

The eigenstate$E) have a very simple time dependence:

|E,t)=|E)e”'¥"". Expanding a statg¥) into energy eigen- || UNCERTAINTY IN TIME IN QUANTUM

states, we may write the time-dependent state as MECHANICS AND THE UNCERTAINTY PRINCIPLE

) FOR ENERGY AND TIME
|q,(t)>=f e =M E)(E|¥)dE,

In classical as well as in quantum physics, excepting gen-
Thus the time-dependent wave function of the stategin eral relativity, space and time are assumed to be given as a

space, say, is fixed background for the description of physical systems.
Although it is plausible that the notions of infinitely extended

<Q|‘I’(t)>:f e "BV q|E)(E|W)dE. homogeneous and isotropic space and time are themselves
abstractions somehow ‘“derived” from the properties of ma-

The left-hand side is the amplitude for finding the system aferial systems like rods and clocks, they appear in the usual
time t at positionq in space. For a fixed value af this  formulation of physical theories agiven For example, the
amplitude is a function of time only and we may compare thd MPortant conservation laws of energy, momentum, and an-

above formula with the Fourier expansion of a time signalgUIar momentum follow from th_e symmetry (.)f this space-
into its frequency components: time background under translations and spatial rotations, re-

spectively. Physical systems are situated in space and time;
F(t)= (Zﬂ)—llzf G(w)e “daw. t_helr dyn_amlcal state is characterized by dynamical variables
like position, momentum, energy, and angular momentum, or

he corresponding densities, which, in general, will depend
n the space—time coordinates. In quantum mechanics the

) ! dynamical variables are turned into operators. On the other
2 2
the widths of(q| W (t))|* and|(q|E)(E|W)|*, but the firstof  p2h4 “the space—time coordinates are parameters in both

these functions cannot be interpreted as a probability dens"éfuantum mechanics and classical mechanics; they do not

in the variablet and the interpretation of the second function correspond to operators. We shall denote the Cartesian coor-
is not straightforwar&. Moreover, unlike the functions jinates of a point in space—time by, X,, X3, t. By time

e ' (o< w<wx), the functionee™'®" do not form a com- o simply mean the time coordinate

plete set of functions df sinceE is bouqded from below and A clockis a physical system possessing a dynamical vari-
the energy spectrum may be partly discrete. able, say a pointer position, the time dependence of which is
Our discussion shows that the similarity between the UNparticularly simple so that the value ofmay be directly

certainty principles for position and momentum and for en<nsarreq from the value of the dynamical variable. We shall
ergy and time is by no means as close as Bohr's "derivagy)| gych a variable éime-indicafingvariable orclock vari-
tion” suggests. Energy, momentum, and position aré;pie ysually, the time dependence of such a clock variable
operators in guantum mechanics and the uncertainties i periodic. For example, let the direction of the hand of a
these quantities are 2representezd as spreads 02f the probabilfyy | pe given by the angl@ in the interval[0,27]. In
distributions [(E|W)|*, [(p|¥)|*, and [(q|¥)|*, respec- (jassical physics this angle is a simple functiontob(t)
tively. Or& tng other hadnd, an un?lertallr_](tjy in time cann:)t be_ ,t(mod 27). The value oft can be directly inferred
construed this way, and a generally valid uncertainty relatio i
of type (3) does ngt exist fogr energ;/ and time. What?/thisn, rtrlnog 2/ 'wz)lfro*rjn 'the Vzlue Of‘.ﬁ‘ Iln q“.ag}“”".' mechanics db
the uncerta_inty principle _for energy and time,_ if such a_prin—cr?cO \é?g% ; el,n ;n%rakl)itr)zlir:amISZn'XJanrwlastaet,elsmr‘et?\reeielzgéi the):/
ciple does indeed exist in quantum mechanics, and, in paﬁutcopmes of a measureme¥1tqof the anglesill now have a
ticular, what meaning can be given to an uncertainty in time? d and th il b Cainty |
In the next section we shall address both problems and gegPread and, as a consequence, there will be an uncertainty in
scribe an approach which is satisfactory in several respectd!€ timet. This comes about as follows. Lg) denote the
(i) It is completely general(ii) It covers the well-known e'%?‘”sta“?s Offﬂ:ﬁ_ angle otperadzlr(iee the neﬁ%zec(t;p? for
physical applications and implies uncertainty relations of thég \scussion o f's op?ra or and its eigenstafése distri-
usual typediii) It has a counterpart for “space” instead of Pution|(4|¥)|* of ¢ values in a2quantum staf@,) at time
“time” and allows a relativistically covariant formulation. t, and the distribution( ¢| ¥, )| of ¢ values at a later time
(iv) It has interesting new applications. t+ 7 will, in general, show some overlap. This means that
In Sec. Il the concept of an uncertainty in time in quantumfrom the result of a measurement®f the state, and there-
mechanics is introduced using the notion of time-indicatingfore the value of the time coordinate, cannot be inferred with
variables orclock variables. A corresponding uncertainty re- certainty. Here, then, we encounter an uncertainty in time of
lation of a very general character between the uncertainty i@ purely quantum mechanical character: It is an uncertainty
time and the total energy of the system is shown to exist anth the parameter tarising from thequantumcharacter of the

In this way, one still finds an analogy between energy an
frequency. Again, an “uncertainty” relation holtibetween
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time-indicating dynamical variables. In the following we energy distribution is situated. It can now be shdwat
shall see that this kind of uncertainty is relevant in many 2—a—p
physical situations. TPWEBZfL arcco%—), for p=2(1—a). (6)

Can we quantify this uncertainty? The uncertainty il @
clearly depend on the timeit takes for the distributions ap ~ This uncertainty relation holds for all statég). The only
values at times andt+ 7 to become distinguishable. A mea- assumptions needed for its validity are the existence of the
sure for this time will be the time it takes for the stafdg)  time-translation operatod(t) and the completeness of the
and| V¥, ,) to become orthogondlHowever, it is not always ~energy eigenstates. We thus find that if the system is in a
practical to require total distinguishability. We shall, there-State which permits the time to be inferred with an uncer-
fore, allow the two states to have some overlap. This rulegainty 7,, the width W5, of the energy distribution of the
out the possibility of distinguishing them with complete cer- state cannot be smaller than is allowed by the inequéity
tainty, but it does allow one to make a distinction with aFor sensible values of the parameters, say0.9 or
certaindegree of reliability Let us write,|¥) and U(7)|¥)  «=0.8, and 0.5p=<1, the right-hand side of6) is of the
instead of ;) and| ¥, ,), whereU(t)=exp(—iHt) is the  order of#.
unitary operator of the evolution in time. The operattbiis In fact, (6) comprises a whole set of relations. For ex-
the Hamiltonian operator of the system and we havefput ample, taking (+p)= J1/2 anda=0.9 and writingT,, for
=1. Let us then define, as the smallest time at which the the corresponding,,, one finds
absolute value of the overlap integral between the two states 1, W5 >0.9%. 7)

has decreased to the value- p: From (4) we see thafl, is the so-callechalf-life of the
(¥|U(7,)|¥)|=1-p, O=p=<l. (4) state, the(smalles}t timelgt which the probability of finding
We shall callp the reliability with which the state$¥) and ~ the system in its original state has decreased to 50%. Thus
U(7,)|¥) can be distinguished. If the states coincide, this(7) expresses the well-known relation between the lifetime of
reliability is 0, whereas it attains its maximum value 1 when@ quantum state and the width of its energy spectrum. This
the states are orthogonal. Furthermore, for a system in thgelation is usually obtained in the approximation in which the
state|¥), we shall say that from a measurement of somedecay of the state is exponential, but we now see that the
given dynamical variable the timtemay (at best be inferred relatl_on is completely general. As an extreme case, consider
with an uncertainty 7, with reliability p. Again, some dy- an eigenstate of the energy; thwE:_O' and by(6) 7,=,
namical variables are better suited to the task of distinguishin @greement with the fact that, in this case, nothing changes.
ing two states than others;, refers to theoptimal ones in
this respect. Alternatively,fg,)‘l might be called thaime
resolutionat reliability p of the measurement. Clearly, if one IIl. THE QUANTUM CLOCK
demands greater reliability from the time measurement, the Let us now return to our simple clod® having a single
resolution becomes poorer. These notions will be further ”'hand and let us see how the above reshlts work out in this
lusirated t_)y the gxample in the next sect_ion. We refer to Se(E:ase.’ In quantum mechanics the angle-variabls repre-
IVfor a discussion of the analogy af, with the notion of  genteq by an operatab. The Hilbert space in the angle
resolving power in optics. representation consists of the square-integrable functions

There now turns out to be a direct relationship between ¢y o the intervall0,27]. The operators of angle and an-
and the width of thenergydistribution of the state. Inserting gular momentum are represented (fy=1)

a complete set of energy eigenstdtes into the matrix ele- OF (d)= i ()

ment in (4) we find that it is the Fourier transform of the ¢)=1(4),

probability density|(E|¥)|2: Lt )= —i a o)
do '

The operator® is self-adjoint on the whole Hilbert space,

(The integral may include a summation over discrete eigenWhereaSL is self-adjoint on the subspace of the square-

values) From (5) one can derive an uncertainty relation be- ntégrable, differentiable, functions satisfyifig0) = f(2).
tweenr, and the width of the energy distribution. As a mea_These operators have complete, orthonormal sets of general-

sure of this width one could take the standard deviafi@h) ized eigenstatefs) and|m>:

but the standard deviation is generally not a suitable measure ®|¢)=¢|d), (dld")=d(d—¢"),
of the width of a quantum mechanical probability distribu- Llmy=m|m), (m|m"y=6nm .

tion: It diverges in many common cas@emember that a . .
quantum mechanical probability distribution need not behere the eigenvalug runs through the interv4D,2m] and

Gaussian, its shape is quite arbitrefA suitable measure of m=0,£1,x2,...

(wluI)= [ el < ©

width may be defined as follows. L®VE be the size of the I the ¢ representation the state) and|m) are repre-
smallest energy interval such that sented by the wave functiorg|¢')=¢—¢') and (¢|m)
=(27) Y%~ M respectively. The situation is very similar
f |(E|¥)|?dE=a. to that of position and momentum, except for the fact that the
w interval on which the function§(¢) are defined is finite. In

. Lo articular, we have
Then,WE is a reasonable measure for the uncertainty in en? e

ergy if « is less than but close to 1. For example,aif |¢>:(27T)71/22 €™/ m) ®)
=0.9, thenWE is the smallest interval on which 90% of the % '
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where the suninot an integral nowruns over all values of

m

.The dynamics of the system is introduced by specifyin

the Hamiltonian; we puH=wlL, wherew is a constant fre-
guency. With the help of8) we find

Ut)lg)=e"""| )
— (277)—1/22 eimd)—imwt|m>

=[¢—wt). ©)

This is precisely the behavior to be expected of the hand on
an ideal clock: It rotates at constant angular velocity an

after an arbitrarily short time an eigensta# of the hand

position goes over into an orthogonal state, that is, the cloc

in this state, has zero uncertair(iye., infinite resolutioh at
maximum reliability: 7; =0. Accordingly, by(6), the width
of the energy distribution of the statég) must be infinite:

W5=00. This is indeed the case: The energy eigenvalues al
om, with m running over all integers; hence, the spectrum

extends from— to +, and all eigenstatelsn) of H ap-
pear in|¢) with equal amplitude.

A more realistic case is obtained if we require the energ

to be bounded. We then restrict the sun{8hto values ofm
which satisfy the condition-1<m=I, wherel is a positive
integer, and consider the states

|

|6)=(21+1)"2 > &™|m), 6#e[0,27].
m=—|
The wave functions in the representation até
|

(plO)=(2m) Y721+ 1)’1/22I gim(6—¢)

Sin (21 +1)(9— ¢)/2]

— -1/2
[27(21+1)] SN (60— )/2] (10
Here, use is made of the identity
| I+1/2_ ,—1-1/2
3 XmEx X
ey Ttz

The functions(10) are no longers functions of ¢ but peak
around the valuep= 60 and have width=2=/(21+1). For
the time evolution we again find

U(t)|6)=|6— wt).
Unlike the stateg8), the stateg¢) and|6— wt) overlap for

Y

not, in itself, rule out the existence of an ideal clock; it says
only that the energy spread of an ideal clock must be infinite.

g Note. Relations of type (6) were first derived by

Uffink,2*3 and their meaning has been studied by Hilgev-
oord and UffinR*41(cf. also the next sectionA discussion

of the quantum clock in much the same spirit as ours has
been given by Buscl We may also refer to his article for
an excellent survey of the whole subject of the uncertainty
principle for energy and time.

IV. THE ANALOGY BETWEEN SPACE AND TIME

d The above discussion of the uncertainty in time can be

repeated, almost word for word, with respect to the space

kcoordinates. For simplicity, let us consider just one space

¢oordinatex. Like the time coordinate, the space coordinate
must be sharply distinguished from dynamical variables at-
tached to a physical system and indicating the position of the

r%ystem in spac¥. As the simplest example, consider the

position-variableg of a point particle. The numerical relation
between this dynamical variable and the space coordinate is
very simple:q=x. That is, from the value of the value of
x can be inferred directly. This simple relation is to be com-
pared with the simple relatio®=wt between a classical
clock variable and the time coordinate in Sec. Il. Again, in
quantum mechanics, is represented by an operator whereas
X remains ac number. LetU(x)=exp(Px) be the unitary
operator of translations in space. HekRejs the operator of
the total momentum of the system. The matrix element
(T|U(x)|P) is the overlap integral between the stéie)
and the space-translated stbigx)|W). Inserting a complete
set of momentum eigenstat#?) we get the analogue of Eq.
(5):

(iU = [ [(Plw)esnap. )
One can now define an uncertairgy in x in the same way
as we defined an uncertainty in

(WU W) =1-p, O<p<Ll. (4)

Let us call§, the (spatia) translation widthof the state. The
translation width is a measure of the place-indicating capac-
ity of the state just as,, is a measure of the time-indicating
capacity of the state. The best place-indicating states have
the smallest translation widths. In particular, the eigenstates
of position variables like are optimal in this respect: By an
arbitrarily small translation an eigenstategpfoes over into

an orthogonal eigenstatel(£)|q)=|q— &). [Compare(9)].

short times, but they become orthogonal after time interval$jence, for these states, = 0. The position variables, there-

which are multiples ofr=2x[(2l+1)w] ! (1#0). Thus
the (2+1) states|g+2wk/(21+1)), with k=—1,...],

fore, are ideal place-indicating variables of the system, just
as the clock variables of an ideal clock are ideal time-

form a complete set of orthonormal states in the spacéndicating variables. We have seen that the existence of ideal

spanned by the statém) with —I<ms=I. Our clock, in a

clocks is impossible if we require the energy to be bounded.

state|6), is no longer ideal; its time resolution at maximum The same is true of the place-indicating variables in systems
reliability is 7;=2#[(21+1)w] 1. On the other hand, the where the total momentum is bounded. On the other hand, if

width of the energy distribution of the statg is no longer
infinite: WE= (2] + 1)aw. Of course, the product; WE sat-
isfies the uncertainty relatiof).

The upshot of the above discussion is that there is an
uncertainty relation between the accuracy with which a

the spectrum of the total momentum is the whole real axis,
all position variables are ideal place-indicating variables.
From (5') and(4'), there follows the uncertainty relation

P 2_a_p ’
§,W,=2%h arcco%T) for p=2(1—a), (6

physical system can indicate time and the width of the en- _ o S .
ergy distribution of its quantum state. This is expressedlvhere the widthW;, of the momentum distribution is defined

quantitatively by relatior(6). This uncertainty relation does as the smallest momentum intery&l such that
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cause position variables of a system do not always exist. An
fW|<P|‘I’>|2d P=a. example is provided by the photdfin such a case, defini-
tion (4') can still be used!

The uncertainty relatior6’) holds for all states under the = One may wonder what the relationship is between the un-

sole condition that the generatBrof translations in space certainty relation(6’) and the usual uncertainty relati¢®).

exists and has a complete set of eigenstates. Suppose thaty(q) is a simple wave packet having a single
We now consider some consequences(&). Suppose pronounced peak of widtA. Then, as is clear fronf12),

that the total momentum of the system is reasonably WeIEp~a for values ofp close to 1. That is, for such wave

determined, i.eW,, is small. Then, the translation wid),  packets, the translation width is of the same order of magni-

of the state must be large. This implies that the spreallin t,de as the standard deviation and other measures of total

position variables must be large. Hence, it is th&al mo-  \yigih like W, . For such wave functions the relatiof® and
mentum which determines whether or not the position varig) gre roughly equivalent. However, if the wave function

ables of the system can be sharply determined. To illustrat onsists of several equidistant peaks of widithas in an

this, let us consider a system with two position varialdes .
and Q, e.g., a two-particle system. The eigenstates of thdt€rference pattern, then, clearl§,~b, whereas the stan-
total momentum can be written in the form dard deviation and measures lik¢,, which are not sensi-
B iP(q+0)/2 tive to the fine structure of the wave function, are still of the,

(a,Q)=x(a-Q)e™ 9%, (11 much bigger, order of the total width. It follows that the
wherey is an arbitrary wave function and the eigenvalue isuncertainty relatior{6’) is essentiallystrongerthan relations
P. Note that(11) need not be an eigenstate of the momenteof type (3).
of the separate particles. The probability densityqinis There is a close similarity between the notion of the trans-
I#(9,Q)|? dQ=f|x(q—Q)|? dQ, which is uniform inq. lation width and the notion of theesolving powerof an
Evidently, the same is true f@. Hence, if the total momen- optical system. The resolving power of an optical instrument
tum is certain, botlg and Q are completely uncertain. On iS defined as the minimum distance between two point
the other hand, if the state is an eigenstate,céay, then it ~ Sources such that the images of the point sources formed by

has the form the instrument can still be distinguished. These images are
(9,Q)=8(q—a)x(q,Q) diffraction patterns which are displaced relative to each other
(a,Q)=2a(q X(4.5), in the image plane. The usual criterion for their distinguish-

wherey is an arbitrary wave function. Every finite transla- ability, viz. Rayleigh’s criterion, rests on the assumption that
tion of the whole system transforms this state into an orthe patterns have a single pronounced peak. The condition
thogonal one; hence, the translation width of this state i§4’) may be considered as a generalization of Rayleigh’s
zero. From(6'), it follows that the widthWZ of the momen- criterion for the distinguishability of two states. If an optical
tum distribution of this state must be infinite. To verify this, instrument is to have a great resolving power, the translation
we consider the wave function of the above state in momenwidth of the images it produces must be small!
tum space: Likewise, condition(4) can be seen as a generalization of
the time analogue of Rayleigh’s criterion. Suppose that, for a
go(k,K)=(27T)_1j f 5(q—a)x(q,Q)e ki~ KQdqdQ  fixedvalue ofq, the wave functior{(q|¥(t)), as a function
of t, has a simple peak of duratidn This would happen fif,
1 ke _ for instance,(q|¥(t)) is a Gaussian wave packet moving
=(2m) e f x(3,Q)e”"dQ. through spac<e with n>egligible dispersion and passing through
] g. Then, for values op close to 1,7, is of the order ofT,
One sees that(P(k’K.)Jz depgnds only orK: |‘P(k’K)|.2 and from(6) it follows that the Widthpof the energy distribu-
=F(K). The probab|l|t2y of finding total momentur® is i, of the state must be at least of the order:éT. Thus
JJ okt K=P)|e(k,K)|* dk dK=[F(K) dK, whichisin-  ,ne recovers the well-known relation, mentioned in the In-
dependent oP. Thus the probability distribution of the total rqqyction, between the duration of a signal and the width of
momentum is uniform and, hencey, is infinite. its energy or frequency spectrum. Again, if the signal has a
We conclude: If the total momentum is certaall posi-  fine structure, conditiofd) will “see” this fine structure and
tion variables are completely uncertain; if at least one posi-+ will be smaller than the total width of the signal. Hence,
tion variable is certain, the total momentum is completelyrejation (6) is stronger than the usual relationship between
uncertain. All this is similar to the relation between clock the duration of a signal and its frequency spread.
variables and the total energy. _ , We may summarize the results of this section as follows.
Sinceq is an ideal plac_e-lndl_catlng variable it can _be qs_ed The uncertainty relatiori6) expresses, for a given quan-
to reexpress the translation width of a state. For simpliCityy,m state, the reciprocal relationship between the spread in
con§|der the one—d|mgn5|onal case. Inserting a complete sglq iotal energy of the system and the accuracy with which
of eigenstatesq) of g into the matrix element¥|U(£)[¥)  the time-indicating dynamical variablégclock variables”)

gives of the system can indicate the time.
. The uncertainty relatio6’) expresses, for a given quan-
(PIUE)|P)=| " () ¥(q—é)dq, (120 tum state, the reciprocal relationship between the spread in

) ] ) the total momentum of the system and the accuracy with
where ¢(q)=(q|¥) is the wave function of the state @  hich the place-indicating dynamical variabléosition
space. Hence, alternatively, we could have introdugeds  variables”) of the system can indicate the place.
the smallest displacement such th#u* (q) ¢(q—£,)dq| Here, “time” and “place” refer to the space-time refer-
=1-p. However, the definition4’) is more general be- ence frame with respect to which the system is described.
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In particular, it follows that if the total energgmomen- o
tum) of a system is known precisely, all clock variables- J
sition variableg are completely uncertain.

Finally, we note that in arelativistic quantum theory,
space and time are united into space—time, and the coordi-
natesx,, X», X3z, t are the components of a 4-vector. Like-
wise, the operator$®;, P,, P; of translations in three-
dimensional space and the operdtbof translations in time
form a 4-vector operator. In this way the uncertainty rela-
tions (6) and (6’) obtain a joint covariant basis.
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V. THE PHOTON BOX: AN EPISODE
FROM THE EINSTEIN —BOHR DEBATE
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In his contribution to the Einstein Seventieth Birthday
Volume: “Albert Einstein: Philosopher-Scientisf’entitled
“Discussion with Einstein on Epistemological Problems in
Atomic Physics,” Bohr gave a careful exposition of his
views on quantum mechanics. He dealt extensively with both

N ] D
ROEHEOEEOhEhHEO sy

the uncertainty principles for momentum and position, and T
for energy and time, and in particular with arguments, raised
by Einstein, which question the consistency of tB®hr's) |

reading of these principlés.Einstein’s stand on the issue is
not completely clear. Presumably, Einstein would not have
objected to a statistical interpretation of the principle in Fig. 1. The photon box experiment.

which the uncertainties are interpreted as spreads in the out-

comes of a long series of independent measurements. But for

Bohr the principle also applies to individual quantum sys-

tems. For Bohr the uncertainties symbolize the bounds “The box,..., is suspended in a spring-balance and is fur-
within which quantities like momentum and position or en- nished with a pointer to read its position on a scale fixed to
ergy and time can be considered to be simultaneously detethe balance support. The weighing of the box may thus be
mined in an individual system. Against this view Einstein performed with any given accuradym by adjusting the bal-
advanced several counterexamples. Undoubtedly, the moahce to its zero position by means of suitable loads. The
famous of these is the photon-box or clock-in-the-box ex-essential point is now that any determination of this position
periment (1930 pertaining to the uncertainty principle of with a given accuracyAq will involve a minimum latitude
energy and time. There is still some discus&fombout  Ap in the control of the momentum of the box connected
the question of whether Einstein directed this thought experiy;ith Aq by the relationAgqAp~h. This latitude must obvi-
ment, in_ the fir_st i_nstance, against Bohr's intgrpretation of th%usly again be smaller than the total impulse which, during
uncertainty principle, as Bohr assumes he did, or that he haghe \yhole intervall of the balancing procedure, can be given

something different in mind, namely, a “locality” type ar- o ' :
gument of the kind put forward, five years later, in the fa- by the gravitational field to a body with massn, or

mous Einstein—Podolsky—Rosen paper. We will not enter Ap~h/Agq<TgAm (a

this discussion but follow Bohr and take the photon-box ex- ) i
periment as being directed against the uncertainty principld/nereg is the gravity constant. The greater the accuracy of

of energy and time. the readingq of the pointer position, the longer must, con-
Let us recall the idea of the photon-box experiment. A boxsequently, be the balancing intervel if a given accuracy

containing some radiation has a hole in one of its wallsAm of the weighing of the box with its content shall be

which can be opened and closed by a shutter controlled by abtained.

clock inside the box. At a preset time the clock opens the Now, according to general relativity theory, a clock, when

shutter for a short interval of time during which a single displaced in the direction of the gravitational force by an

photon escapes. In this way the time of escape of the photaamountAq, will change its rate in such a way that its read-

can be determined with arbitrary precision. Since energy isng in the course of a time interval will differ by an amount

equivalent to inertial mass, and mass has weight, the energyt given by the relation

of the box can be determined by weighing it in a gravita- s

tional field. Hence, by weighing the box before and after the ~AT/T=c “gAq. (b)

escape of the photon, the energy of the photon can also B8, omparing(a) and (b) we see, therefore, that after the

found w_ith_alr bitrfary precisi%n.. But :Ihis vié).lates_ the u(;‘Celr'weighing procedure there will in our knowledge of the ad-
tainty principle of energy and time. Here, Einstein used relay ciment of the clock be a latitude

tivity theory to show the inconsistency of Bohr’s interpreta-
tion of the quantum mechanical uncertainty principle! Bonr ~ AT>h/c?Am.
refuted Einstein by a famous argument in which, for his part
he used the relativistic effect of a gravitational field on the
rate of the clock in the box. | reproduce his arguni&ff.

Fig. 1):% ATAE>h,

Together with the formul&=mc?, this relation again leads
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quently, a use of the apparatus as a means of accuratelynys-64 1451-14561996.

: : iels Bohr, “The Quantum Postulate and the Recent Development of
measuring the energy of the photon will prevent us from Atomic Theory,” Nature(London) 121, 580-590(1928

contrpll_lng th_e moment of its escape. 3Niels Bohr, in Albert Einstein: Philospher-Scientisedited by P. A.
This ingenious argument has been agsgéau_de_d by r?ﬁ_ﬁﬁ‘y, Schilpp, The Library of Living Philosophers Volume MiOpen Court, La

but it has failed to convince many othérs?® It is interesting Salle, IL, 1949, pp. 201—241.

to note that, whereas the original discussion with Einstein“with Bohr the symbolA does not denote the standard deviation but some

took place in 1930, Bohr did not publish his rebuttal until unspecified relevant measure of width.

1948 and, apparently’ went on thlnklng about the problem,SE P. Wigner, “On the Tlme-Energy Uncertainty Relatiqn,”Arspech of

for, on the last day of his lifg18 November 1962 he SuFf"“tgm Lh.zo“yefg;g by Abdus Salam and E. P. Wigri@ambridge

.o 7 .P., Cambridge,

_Sketched the photon box on the blackboard in his hefe. . %P. Busch, “On the Energy-Time Uncertainty RelatiofParts | and IJ,

is not my purpose, here, to analyze the argument V\_/hlch Found. Phys20, 1-43(1990, Sec. 3.3.3.

would surely be no easy task. | only remark that Bohr fixed 7t should be noted that, even when the states are orthogonal, a measure-

his attention on the procedure by which the energy of the boX ment of ¢ may not be capable of distinguishing with certainty between
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the clock itself but 0n|y to the vertical motion of the box's Particle in any direction other than tizedirection does not allow one to

center of mass, and the uncertainty principle of position and distinguish with certainty between the two orthogonal eigenstates of the

. . L spin in thez direction. However, a measurement of the spin component in
momentum is called on to save the uncertainty pl‘lnCIple of the z direction does. Generally, if two states are orthogonal, there are

energy and time. Under close scrutiny Bohr's argument \qiapjes a measurement result of which enables one to distinguish with

raises many questions which, in my view, have never beencertainty between the states.

satisfactorily answered. 8J. Hilgevoord and J. Uffink, “The mathematical expression of the uncer-
If, however, the results of the previous sections are appliedtainty principle,” in Microphysical Reality and Quantum Formalisked-

directly to the clock-shutter system, the problem gets an easyited by A. van der Merwet al. (Kluwer, Dordrecht, 1988 pp. 91-114.

solution. The shutter may be considered as the hand of g>¢¢ the end of Sec. IIl.

. . . f'a'The idea of a quantum clock orinates with Wigner: E. P. Wigner, “Rela-
clock passing over the hole. Now, if one wants to determine tivistic Invariance and Quantum Phenomena,” Rev. Mod. PB@s255—

the energy of the escaping photon by a _Su_t?seque”t measuresgg (1957; and H. Salecker and E. P. Wigner, “Quantum Limitations of
ment of the energy of the box, the total initial energy of the the Measurement of Space-Time Distances,” Phys. R€@, 571577
system must be accurately known. But from the general re- (1958.
sult stated at the end of the previous section it follows that all*A. Peres, “Measurement of time by quantum clocks,” Am. J. PHg.
time-indicating dynamical variables of the system must then 552-557(1980; Quantum Theory: Concepts and Methdé$uwer, Dor-
be unsharp, and, in particular, the time when the shuttepd"écht 1998 — . o .

. . . J. Uffink and J. Hilgevoord, “Uncertainty Principle and Uncertainty Re-
opens the hole is uncertain. Therefore, under the CIrCUM- - ions.” Found. Phys15, 9259441985, Appendix D.
stance that the energy of the photon can be determined byto; an alternative derivation, see J. Uffink, “The rate of evolution of a
weighing the box afterwards, the time of escape is uncertain,quantum state,” Am. J. Phy$§1, 935-936(1993.
the uncertainties in energy and time being related by relatioffJ. Hilgevoord and J. Uffink, “A new view on the uncertainty principle,”
(6). Hence, quite independent of the way the energy of the in Sixty-Two Years of Uncertainty, Historical and Physical Inquiries into
box is measured, Einstein’s idea of violating the uncertainty the Foundations of Quantum Mechanieslited by A. 1. Miller (Plenum,

o ; ; _ New York, 1990, pp. 121-139.
pI’InCIple by appeallng to the conservation law of energy canss . Hilgevoord and J. Uffink, “Uncertainty in Prediction and in Inference,”

not succeed.
, . . Found. Phys21, 323—-341(199).
We note that Bohr’s relatiofb) depends on the classical 1p_gysch, “on the Energy-Time Uncertainty RelatiofParts | and ),

redshift formula relating the time shown by a clock in @ Found. Phys20, 1-43(1990, Sec. 3.4.

gravitational field and coordinate tini.It is precisely the  "See Jan Hilgevoord, “The uncertainty principle for energy and time,”
relation between the clock time and the coordinate time Am.J. Phys64, 1451-14561996. _
which, in the previous sections, was found to become uncerl_sA. S. Wightman, “On the localizability of Quantum Mechanical Sys-

P : tems,” Rev. Mod. Phys34, 845-872(1962.
tain if the energy of the system Is accurately known. Fromlgl’his article is reprinted in J. A. Wheeler and W. H. Zur&guantum

this pOII‘.lt of VIQW the uncertalnt&T may be See_n as an EXtra. Theory and Measureme(®rinceton U.P., Princeton, 198%p. 9-52, and

uncertainty, arising from the way the energy is measured, inin Niels Bohr, Collected Worksedited by J. KalckafElsevier, Amster-

addition to the uncertainty, which, on account of relation dam, 199, Vol. 7, pp. 339-381.

(6), is already present in the initial state. 20Don Howard, “ ‘Nicht Sein Kgnn Was Nicht Sein !Darf,’ Or the Prehistory
In the same article Bohr discussed a proposal of Einstein’s °f the EPR, 1909-1935: Einstein's Early Worries About the Quantum

to violate the uncertainty principle of position and momen-mme;gf ”3'°Spgf ;:;;n_ pzost;te Systems,” in Ref. 14, pp. 61-113.

tum by using the conservation law of momentEﬁﬂt will 22This is Fig. 8 of Ref. 3.

not come as a surprise that this proposal also fails on accour. pais, Subtle is the Lord...(Oxford U.P., Oxford, 1982 p. 447.

of our general uncertainty relation between the total momen#R. Peierls,Surprises in Theoretical Physig®rinceton U.P., Princeton,

tum and all place-indicating dynamical variables of the sys- 1979, p. 36.
tem. ZFor a survey of the discussion up to 1974 see M. Jamiftez,Philosophy

of Quantum MechanicéNiley, New York, 1974, Chap. 5.

2H.-H. von Borzeszkowski and H.-J. Tredéfhe Meaning of Quantum
ACKNOWLEDGMENTS Gravity (Reidel, Dordrecht, 1987 p. 17.

. .. . . 2Niels Bohr, Collected Worksdited by J. KalckatElsevier, Amsterdam,
I thank Jos Uffink for his interest in this paper and par- 1996, Vol. 7, p. 286.

ticqlarly for the many years _Of C'PSe C(_)".aboration fom 2. G. Unruh and G. I. Opat, “The Bohr-Einstein ‘weighing of energy’
which many of the ideas in this article originated. | am in- debate,” Am. J. Phys47, 743(1979.
debted to Sheila McNab for her help with the English. n Ref. 3, p. 215.

402 Am. J. Phys., Vol. 66, No. 5, May 1998 Jan Hilgevoord 402



