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Abstract 

In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum 

mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are 
analytically solvable and an array of powerful new approximation methods for handling potentials which 
are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum 
mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few 
basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. 
Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape 
invariant potentials which include the recently discovered self-similar potentials as a special case. The connection 
between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi- 
soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the 

framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired 

WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly 
nice results for the tunneling rate in a double well potential and for improving large N expansions. We also 

discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of 

supersymmetric quantum mechanics, Finally, we discuss structures more general than supersymmetric quantum 
mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and 

a para-fermion of order p. 
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1. Introduction 

Physicists have long strived to obtain a unified description of all basic interactions of nature, i.e. 
strong, electroweak, and gravitational interactions. Several ambitious attempts have been made in the 
last two decades, and it is now widely felt that supersymmetry (SUSY) is a necessary ingredient in 
any unifying approach. SUSY relates bosonic and fermionic degrees of freedom and has the virtue 
of taming ultraviolet divergences. It was discovered in 1971 by Gel’fand and Likhtman [ 11, Ramond 
[ 21 and Neveu and Schwartz [ 31 and later was rediscovered by several groups [ 4-61. The algebra 
involved in SUSY is a graded Lie algebra which closes under a combination of commutation and 
anti-commutation relations. It was first introduced in the context of the string models to unify the 
bosonic and the fermionic sectors. It was later shown by Wess and Zumino [5] how to construct 
a 3 + 1 dimensional field theory which was invariant under this symmetry and which had very 
interesting properties such as a softening of ultraviolet divergences as well as having paired fermionic 

and bosonic degrees of freedom. For particle theorists, SUSY offered a possible way of unifying 
space-time and internal symmetries of the S-matrix which avoided the no-go theorem of Coleman 
and Mandula [7] which was based on the assumption of a Lie algebraic realization of symmetries 
(graded Lie algebras being unfamiliar to particle theorists at the time of the proof of the no-go 
theorem). Gravity was generalized by incorporating SUSY to a theory called supergravity [ 8,9]. In 
such theories, Einstein’s general theory of relativity turns out to be a necessary consequence of a 
local gauged SUSY. Thus, local SUSY theories provide a natural framework for the unification of 
gravity with the other fundamental interactions of nature. 

Despite the beauty of all these unified theories, there has so far been no experimental evidence 
of SUSY being realized in nature. One of the important predictions of unbroken SUSY theories is 
the existence of SUSY partners of quarks, leptons and gauge bosons which have the same masses as 
their SUSY counterparts. The fact that no such particles have been seen implies that SUSY must be 
spontaneously broken. One hopes that the scale of this breaking is of the order of the electroweak 
scale of 100 GeV in order that it can explain the hierarchy problem of mass differences. This leads 
to a conceptual problem since the natural scale of symmetry breaking is the gravitational or Planck 
scale which is of the order of 1019 GeV. Various schemes have been invented to try to resolve the 
hierarchy problem, including the idea of non-perturbative breaking of SUSY. It was in the context of 
this question that SUSY was first studied in the simplest case of SUSY quantum mechanics (SUSY 
QM) by Witten [ lo] and Cooper and Freedman [ 111. In a subsequent paper, a topological index 
was introduced (the Witten index) by Witten [ 121 for studying SUSY breaking and several people 
studied the possibility that instantons provide the non-perturbative mechanism for SUSY breaking. 
In the work of Bender et al. [ 131 a new critical index was introduced to study non-perturbatively 
the breakdown of SUSY in a lattice regulated theory. Thus, in the early days, SUSY was studied in 
quantum mechanics as a testing ground for the non-perturbative methods of seeing SUSY breaking 
in field theory. 

Once people started studying various aspects of SUSY QM, it was soon clear that this field was 
interesting in its own right, not just as a model for testing field theory methods. It was realized that 
SUSY gives insight into the factorization method of Infeld and Hull [ 141 which was the first method 
to categorize the analytically solvable potential problems. Gradually a whole technology was evolved 
based on SUSY to understand the solvable potential problems. One purpose of this article is to review 
some of the major developments in this area. 
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Before we present a brief historical development of supersymmetric quantum mechanics, let us 
note another remarkable aspect. Over the last 10 years, the ideas of SUSY have stimulated new 
approaches to other branches of physics [ 151. For example, evidence has been found for a dynamical 
SUSY relating even-even and even-odd nuclei. The Langevin equation and the method of stochastic 
quantization has a path integral formulation which embodies SUSY. There have also been applications 
of SUSY in atomic, condensed matter and statistical physics [ 151. 

In SUSY QM one is considering a simple realization of a SUSY algebra involving the fermionic 
and the bosonic operators. Because of the existence of the fermionic operators which commute with 
the Hamiltonian, one obtains specific relationships between the energy eigenvalues, the eigenfunctions 
and the S-matrices of the component parts of the full SUSY Hamiltonian. These relationships will 
be exploited in this article to categorize analytically solvable potential problems. Once the algebraic 
structure is understood, the results follow and one never needs to return to the origin of the Fermi- 
Bose symmetry. In any case, the interpretation of SUSY QM as a degenerate Wess-Zumino field 
theory in one dimension has not led to any further insights into the workings of SUSY QM. 

The introduction by Witten [ 121 of a topological invariant to study dynamical SUSY breaking led to 
a flurry of interest in the topological aspects of SUSY QM. Various properties of the Witten index were 
studied in SUSY QM and it was shown that in theories with discrete as well as continuous spectra, 
the index could display anomalous behavior [ 16-231. Using the Wigner-Kirkwood h expansion it 
was shown that for systems in one and two dimensions, the first term in the ti expansion gives the 
exact Witten index [ 241. Further, using the methods of SUSY QM, a derivation of the Atiyah-Singer 
index theorem was also given [ 25-281. In another development, the relationship between SUSY and 
the stochastic differential equations such as the Langevin equation was elucidated and exploited by 
Parisi and Sourlas [ 291 and Cooper and Freedman [ 111. This connection, which implicitly existed 
between the Fokker-Planck equation, the path integrals and the Langevin equation was then used 
to prove algorithms about the stochastic quantization as well as to solve non-perturbatively for the 
correlation functions of SUSY QM potentials using the Langevin equation. 

A path integral formulation of SUSY QM was first given by Salomonson and van Holten [ 301. 
Soon afterwards it was shown by using SUSY methods, that the tunneling rate through double well 
barriers could be accurately determined [ 3 l-341. At the same time, several workers extended ideas 
of SUSY QM to higher dimensionsal systems as well as to systems with large numbers of particles 
with a motivation to understand the potential problems of widespread interest in nuclear, atomic, 
statistical and condensed matter physics [ 35-431. 

In 1983, the concept of a shape invariant potential (SIP) within the structure of SUSY QM was 
introduced by Gendenshtein [ 44 1. This Russian paper remained largely unnoticed for several years. A 
potential is said to be shape invariant if its SUSY partner potential has the same spatial dependence as 
the original potential with possibly altered parameters. It is readily shown that for any SIP, the energy 
eigenvalue spectra could be obtained algebraically [44]. Much later, a list of SIPS was given and 
it was shown that the energy eigenfunctions as well as the scattering matrix could also be obtained 
algebraically for these potentials [45-481. It was soon realized that the formalism of SUSY QM 
plus shape invariance (connected with translations of parameters) was intimately connected to the 
factorization method of Infeld and Hull [ 141. 

It is perhaps appropriate at this point to digress a bit and talk about the history of the factorization 
method. The factorization method was first introduced by Schrbdinger [49] to solve the hydrogen 
atom problem algebraically. Subsequently, Infeld and Hull [ 141 generalized this method and obtained 
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a wide class of solvable potentials by considering six different forms of factorization. It turns out 
that the factorization method as well as the methods of SUSY QM including the concept of shape 
invariance (with translation of parameters), are both reformulations [ 501 of Riccati’s idea of using 
the equivalence between the solutions of the Riccati equation and a related second order linear 
differential equation. This method was supposedly used for the first time by Bernoulli and the history 
is discussed in detail by Stahlhofen [ 5 11. 

The general problem of the classification of SIPS has not yet been solved. A partial classification of 
the SIPS involving a translation of parameters was done by Cooper et al. [ 52,531. It turns out that in 
this case one only gets all the standard analytically solvable potentials contained in the list given by 
Dutt et al. [ 541 except for one which was later pointed out by Levai [ 551, The connection between 
SUSY, shape invariance and solvable potentials [56,57] is also discussed in the paper of Cooper 
et al. [52] where these authors show that shape invariance even though sufficient, is not necessary 
for exact solvability. Recently, a new class of SIPS has been discovered which involves a scaling of 
parameters [ 581. These new potentials as well as multi-step SIPS [ 591 have been studied, and their 
connection with self-similar potentials as well as with q-deformations has been explored [ 60-631. 

In yet another development, several people showed that SUSY QM offers a simple way of obtaining 
isospectral potentials by using either the Darboux [64] or Abraham-Moses [65] or Pursey [66] 
techniques, thereby offering glimpses of the deep connection between the methods of the inverse 
quantum scattering [67], and SUSY QM [ 68-721. The intimate connection between the soliton 
solutions of the KdV hierarchy and SUSY QM was also brought out at this time [ 73-761, 

Approximate methods based on SUSY QM have also been developed. Three of the notable ones 
are the 1 /N expansion within SUSY QM [ 771, 6 expansion for the superpotential [ 781 and a SUSY 
inspired WKB approximation (SWKB) in quantum mechanics for the case of unbroken SUSY [ 79- 
81 1. It turns out that the SWKB approximation preserves the exact SUSY relations between the 
energy eigenvalues as well as the scattering amplitudes of the partner potentials [ 821. Further, it is 
not only exact for large n (as any WKB approximation is) but by construction it is also exact for the 
ground state of VI (x) . Besides it has been proved [45] that the lowest order SWKB approximation 
necessarily gives the exact spectra for all SIP (with translation). Subsequently a systematic higher 
order SWKB expansion has been developed and it has been explicitly shown that to 0(ti6) all the 
higher order corrections are zero for these SIP [ 831. This has subsequently been generalised to all 
orders in ti [ 84,851. Energy eigenvalue spectrum has also been obtained for several non-SIP [ 86-891 
and it turns out that in many of the cases the SWKB does better than the usual WKB approximation. 
Based on a study of these and other examples, it has been suggested that shape invariance is not only 
sufficient but perhaps necessary for the lowest order SWKB to give the exact bound state spectra 
[ 901. Some attempts have also been made to obtain the bound state eigenfunctions within the SWKB 
formalism [ 91-931. 

Recently, Inomata and Junker [94] have derived the lowest order SWKB quantization condition 
(BSWKB) in case SUSY is broken. It has recently been shown that for the cases of shape invariant 
three dimensional oscillator as well as for Pbschl-Teller I and II potentials with broken SUSY, this 
lowest order BSWKB calculation gives the exact spectrum [ 95,971. Recently, Dutt et al. [ 961 have 
also developed a systematic higher order BSWKB expansion and using it have shown that in all the 
three (shape invariant) cases, the higher order corrections to O(ti6) are zero. Further, the energy 
eigenvalue spectrum has also been obtained in the case of several non-SIP and it turns out that in 
many cases BSWKB does as well as (if not better than) the usual WKB approximation [ 961. 
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Recursion relations between the propagators pertaining to the SUSY partner potentials have been 
obtained and explicit expressions for propagators of several SIP have been obtained [ 98,991. 

Several aspects of the Dirac equation have also been studied within SUSY QM formalism [ IOO- 
1021. In particular, it has been shown using the results of SUSY QM and shape invariance that 
whenever there is an analytically solvable Schrijdinger problem in l-dimensional QM then there 
always exists a corresponding Dirac problem with scalar interaction in 1+1 dimensions which is 
also analytically solvable. Further, it has been shown that there is always SUSY for massless Dirac 
equation in two as well as in four Euclidean dimensions. The celebrated problem of the Dirac particle 
in a Coulomb field has also been solved algebraically by using the concepts of SUSY and shape 
invariance [ 1031. The SUSY of the Dirac electron in the field of a magnetic monopole has also been 
studied [ 104,105]. Also, the classic calculation of Schwinger on pair production from strong fields 
can be dramatically simplified by exploiting SUSY. 

The formalism of SUSY QM has also been recently extended and models for parasupersymmetric 
QM [ 106-1081 as well as orthosupersymmetric QM [ 1091 of arbitrary order have been written down. 
The question of singular superpotentials has also been discussed in some detail within SUSY QM 
formalism [ 110-l 141. Very recently it has been shown that SUSY QM offers a systematic method 
[ 1151 for constructing bound states in the continuum [ 116-1181. 

As is clear from this (subjective) review of the field, several aspects of SUSY QM have been 
explored in great detail in the last ten years and it is almost impossible to cover all these topics and 
do proper justice to them. We have therefore, decided not to pretend to be objective but cover only 
those topics which we believe to be important and which we believe have not so far been discussed in 
great detail in other review articles. We have, however, included in Section 14 a list of the important 
topics missed in this review and given some references so that the intersested reader can trace back 
and study these topics further. We have been fortunate in the sense that review articles already exist 
in this field where several of these missing topics have been discussed [ 119-122,54,123-125,100]. 
We must also apologize to several authors whose work may not have been adequately quoted in this 
review article in spite of our best attempts. 

The plan of the article is the following: In Section 2, we discuss the Hamiltonian formalism of 
SUSY QM. We have deliberately kept this section at a pedagogical level so that a graduate student 
should be able to understand and work out all the essential details. The SUSY algebra is given and the 
connection between the energy eigenvalues, the eigenfunctions and the S-matrics of the two SUSY 
partner Hamiltonians are derived. The question of unbroken vs. broken SUSY is also introduced at 
a pedagogical level using polynomial potentials of different parity and the essential ideas of partner 
potentials are illustrated using the example of a one dimensional infinite square well. The ideas of 
SUSY are made more explicit through the example of one dimensional SUSY harmonic oscillator. 

In Section 3, we discuss the connection between SUSY QM and factorization and show how one can 
always construct a hierarchy of p > 1 Hamiltonians with known energy eigenvalues, eigenfunctions 
and S-matrices by starting from any given Hamiltonian with p bound states whose energy eigenvalues, 
eigenfunctions and S-matrices (reflection coefficient R and transmission coefficient T) are known. 

Section 4 is in a sense the heart of the article. We first show that if the SUSY partner potentials 
satisfy an integrability condition called shape invariance then the energy eigenvalues, the eigenfunc- 
tions and the S-matrices for these potentials can be obtained algebraically. We then discuss satisfying 
the condition of shape invariance with translations and show that in this case the classification of 
SIP can be done and the resultant list of solvable potentials include essentially all the popular ones 
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that are included in the standard QM textbooks. Further, we discuss the newly discovered one and 
multi-step shape invariant potentials when the partner potentials are related by a change of parameter 
of a scaling rather than translation type. It turns out that in most of these cases the resultant po- 
tentials are reflectionless and contain an infinte number of bound states. Explicit expressions for the 
energy eigenvalues, the eigenfunctions and the transmission coefficients are obtained in various cases. 
It is further shown that the recently discovered self-similar potentials which also statisfy q-SUSY, 
constitute a special case of the SIP. Finally, we show that a wide class of noncentral but separable 
potential problems are also algebraically solvable by using the results obtained for the SIP [ 1311. 
As a by product, exact solutions of a number of three body problems in one dimension are obtained 
analytically [ 1321. 

In Section 5, we discuss the solvable but non-shape invariant Natanzon and Ginocchio potentials 
and show that using the ideas of SUSY QM, shape invariance and operator transformations, their 
spectrum can be obtained algebraically. We also show that the Natanzon potentials are not the most 
general solvable potentials in nonrelativistic QM. 

Section 6 is devoted to a discussion of the SUSY inspired WKB approximation (SWKB) in 
quantum mechanics both when SUSY is unbroken and when it is spontaneously broken. In the 
unbroken case, we first develop a systematic higher order ti -expansion for the energy eigenvalues 
and then show that for the SIP with translation, the lowest order term in the &expansion gives the 
exact bound state spectrum. We also show here that even for many of the non-SIP, the SWKB does 
as well as if not better than the WKB approximation. We then discuss the broken SUSY case and in 
that case too we develop a systematic &expansion (BSWKB) for the energy eigenvalues. We show 
that even in the broken case the lowest order BSWKB gives the exact bound state spectrum for the 
SIP with translation. 

Section 7 contains a description of how SUSY QM can be used to construct multiparameter families 
of isospectral and strictly isospectral potentials. As an illustration we give plots of the one continuous 
parameter family of isospectral potentials corresponding to the one-dimensional harmonic oscillator. 
From here we are immediately able to construct the two as well as multisoliton solutions of the KdV 
equation. 

In Section 8, we discuss more formal aspects of SUSY QM. In particular, we discuss the path 
integral formulation of SUSY QM as well as various subtleties associated with the Witten index [ 121 
d = (- 1) F. We also discuss in some detail the connection of SUSY QM with classical stochastic 
processes and discuss how one can develop a systematic strong coupling and 8 -expansion for the 
Langevin equation. 

Section 9 contains a description of several approximation schemes like the variational method, 
the S-expansion, large-h’ expansion, energy splitting in double well potentials within the SUSY QM 
framework. 

In Section 10, we discuss the question of SUSY QM in higher dimensions. In particular, we discuss 
the important problem of a charged particle in a magnetic field (Pauli equation) in two dimensions 
and show that there is always a SUSY in the problem so long as the gyromagnetic ratio is 2. 

In Section 11, we show that there is always a SUSY in the case of massless Dirac equation in 
two or four Euclidean dimensions in the background of external electromagnetic fields. Using the 
results of SUSY QM we then list a number of problems with nonuniform magnetic field which can 
be solved analytically. We also show here that whenever a Schrodinger problem in l-dimensional 
QM is analytically solvable, then one can always obtain an exact solution of a corresponding Dirac 
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problem with the scalar coupling. We also show how the calculation of the fermion propagator in an 
external field can be simplified by exploiting SUSY. 

Section 12 contains a comprehensive discussion of the general problem of singular superpotentials, 
explicit breaking of SUSY, negative energy states and unpaired positive energy eigenstates. We also 
show here how to construct bound states in the continuum within the formalism of SUSY QM. 

Quantum mechanical models relating bosons and parafermions of order p are described in Section 
13. It is shown that such models encompass p supersymmetries. Various consequences of such models 
are discussed including the connection with the hierarchy of Hamiltonians as well as with strictly 
isospectral potentials. We also discuss a quantum mechanical model where instead there is a symmetry 
between a boson and an orthofermion of order p. 

Finally, in Section 14, we give a list of topics related to SUSY QM which we have not discussed 
and provide some references for each of these topics. 

2. Hamiltonian formulation of supersymmetric quantum mechanics 

One of the key ingredients in solving exactly for the spectrum of one dimensional potential 
problems is the connection between the bound state wave functions and the potential. It is not usually 
appreciated that once one knows the ground state wave function (or any other bound state wave 
function) then one knows exactly the potential (up to a constant). Let us choose the ground state 
energy for the moment to be zero. Then one has from the Schrodinger equation that the ground state 
wave function fiO(x) obeys 

h* d2i,bo 

so that 

h2 @l(x) 
v,(x) = -~ 

2m ccl0W . 
(2) 

This allows a global reconstruction of the potential V, (x) from a knowledge of its ground state wave 
function which has no nodes (we will discuss the case of using the excited wave functions later 
in Section 12). Once we realize this, it is now very simple to factorize the Hamiltonian using the 
following ansatz: 

H1 = A+A (3) 

where 

A=-&+W(n), A’=~$+W(x). (4) 

(3 

This allows us to identify 

q(x) = w*(x) - -W’(x). v&i 
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This equation is the well-known Riccati equation. The quantity W(x) is generally referred to as the 
“superpotential” in SUSY QM literature. The solution for W(x) in terms of the ground state wave 
function is 

(6) 

This solution is obtained by recognizing that once we satisfy A& = 0, we automatically have a 
solution to Hl@a = A+A& = 0. 

The next step in constructing the SUSY theory related to the original Hamiltonian HI is to define 
the operator H2 = AA+ obtained by reversing the order of A and A+. A little simplification shows that 
the operator Hz is in fact a Hamiltonian corresponding to a new potential V2 (x) . 

v,(x) = W2(x) + 

The potentials V, (x) and V,(x) are known as supersymmetric partner potentials. 
As we shall see, the energy eigenvalues, the wave functions and the S-matrices of HI and H2 are 

related. To that end notice that the energy eigenvalues of both HI and H2 are positive semi-definite 
(E(1*2) > 0) . For n > 0, the Schrtidinger equation for HI n - 

H&A’) = AtA@;‘) = E,I’)$;‘) (8) 

implies 

H2(At,b’(I)) = AA+A#‘*’ n n = E;“(A#‘). 

Similarly, the Schrijdinger equation for H2 

(9) 

H2$L2) 
= AA+&2 = E;2)$;2) 

(10) 

implies 

HI ( A+$c2’) = A+AA+@‘2’ = Ei2’( A++c2’) n n ” - (111 

From Eqs. (8)-( 11) and the fact that E,, (I) - 0 it is clear that the eigenvalues and eigenfunctions of - , 
the two Hamiltonians HI and HZ are related by (n = 0, 1,2, . . .) 

E(2) 
n = E;?,, E;” = 0, (12) 

t,b;” = [ E$] -“‘At,b$, (13) 

(cl;;‘, = [ Er’] --1/2A+@. (14) 

Notice that if @,$\ ( @A2)) of HI ( H2) is normalized then the wave function $A”) (@,$\ > in Eqs. ( 13) 
and ( 14) is also normalized. Further, the operator A (At) not only converts an eigenfunction of HI 
( H2) into an eigenfunction of H2( HI) with the same energy, but it also destroys (creates) an extra 
node in the eigenfunction. Since the ground state wave function of HI is annihilated by the operator 
A, this state has no SUSY partner. Thus the picture we get is that knowing all the eigenfunctions 
of HI we can determine the eigenftmctions of HZ using the operator A, and vice versa using At we 
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11) 
El 

(2) 
EO 

(1 1 
EO 

V,(x) V,(x) 
Fig. 2.1. The energy levels of two supersymmetric partner potentials VI and b. The figure corresponds to unbroken SUSY. 
The energy levels are degenerate except that 6 has an extra state at zero energy E,, (‘) = 0 The action of the operators A . 
and At in connecting eigenfunctions is shown. 

can reconstruct all the eigenfunctions of HI from those of Hz except for the ground state. This is 
illustrated in Fig. 2.1. 

The underlying reason for the degeneracy of the spectra of HI and H2 can be understood most 
easily from the properties of the SUSY algebra. That is we can consider a matrix SUSY Hamiltonian 
of the form 

(15) 

which contains both HI and Hz. This matrix Hamiltonian is part of a closed algebra which contains 
both bosonic and fermionic operators with commutation and anti-commutation relations. We consider 
the operators 

(16) 

(17) 

in conjunction with H. The following commutation and anticommutation relation s then describe the 
closed superalgebra sZ( 1 / 1) : 

[H, Ql = [H, Q+l = 0, 

(12, Q+) = fL {Q, Q} = {Q+, Q+} = 0. Cl@ 

The fact that the supercharges Q and Qt commute with H is responsible for the degeneracy. The 
operators Q and Qt can be interpreted as operators which change bosonic degrees of freedom into 
fermionic ones and vice versa. This will be elaborated further below using the example of the SUSY 
harmonic oscillator. 

Let us look at a well known potential, namely the infinite square well and determine its SUSY 
partner potential. Consider a particle of mass m in an infinite square well potential of width L. 
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V(x) =o, O<X<L, 

=oO, --oo<x<o, x > L. (19) 

The ground state wave function is known to be 

@ = (2/L)‘/*sin(rx/L), 0 5 x _< L, (20) 

and the ground state energy is Eo = tL27r2/2mL2. 
Subtracting off the ground state energy so that we can factorize the Hamiltonian we have for H, 

= H - &, that the energy eigenvalues are 

,I$‘) = 
n 

and the eigenfunctions are 

(ii(l) = (2/L)‘/*sin 
(n + l)rx 

n L ) O<x<L. 

(21) 

(22) 

The superpotential for this problem is readily obtained using Eq. (6) 

W(x) = -- 
&: 

cot@x/L) 

and hence the supersymmetric partner potential V, is 

(23) 

h(x) = gg [ 2cosec2 (7rx/ L) - 11. (24) 

The wave functions for H2 are obtained by applying the operator A to the wave functions of HI. In 
particular we find that 

&*’ c( sin*(?rx/L), $,“’ c( sin(?rx/L) sin(29rx/L). (25) 

Thus we have shown using SUSY that two rather different potentials corresponding to HI and 
H2 have exactly the same spectra except for the fact that H2 has one fewer bound state. In Fig. 
2.2 we show the supersymmetric partner potentials V, and V2 and the first few eigenfunctions. For 
convenience we have chosen L = T and ti = 2m = 1. 

Supersymmetry also allows one to relate. the reflection and transmission coefficients in situations 
where the two partner potentials have continuum spectra. In order for scattering to take place in both 
of the partner potentials, it is necessary that the potentials V ,,2 are finite as x --f -c0 or as x --f +oo 
or both. Define: 

W(x --+ 500) = w*. (26) 

Then 

52 -+ w: as x+&c. (27) 

Let us consider an incident plane wave eikx of energy E coming from the direction x -+ --oo. As 
a result of scattering from the potentials Vr ,2 (x) one would obtain transmitted waves 7’i ,2 ( k) 8” and 
reflected waves RI ,2 ( k) e- ikx. Thus we have 
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V,(x) = 2 cosec2 x 

0 71 0 7r 
X X 

Fig. 2.2. The infinite square well potential V = 0 of width L = ?r and its supersymmetric partner potential 2cosec’x in units 
ti = 2m = 1. The ground state of the infinite square well has energy 1. Note the degenerate higher energy levels at energies 
22,32,42,. . . 

q!~(‘,~)(k, ,x --t -00) -+ eik.’ + R1,2e-ikx, 

$F (k’, x -+ +co) + 7i2eikfx. (28) 

SUSY connects continuum wave functions of Hi and H2 having the same energy analogously to what 
happens in the discrete spectrum. Thus we have the relationships: 

eikx + Rle-ikx = N[ (-ik + W_)eikx + (ik + W_)e-ik”R2], 

Tie ik’x = N[ (--i/c’ + W+ ) eik’xT2] , (29) 

where N is an overall normalization constant. On equating terms with the same exponent and 
eliminating N, we find: 

(30) 

where k and k’ are given by 

k = (E - Wf)“2, k’ = (E - W:)‘12. (31) 

A few remarks are now in order at this stage. 

(I) Clearly IR1j2 = IR212 and (Tl12 = IT212, that is the partner potentials have identical reflection 

and transmission probabilities. 
(2) R, (T, ) and R2( T2) have the same poles in the complex plane except that R, (Tl) has an extra 

pole at k = -iW_. This pole is on the positive imaginary axis only if W- < 0 in which case it 
corresponds to a zero energy bound state. 

(3) In the special case that W+ = W_, we have that T, (k) = T2( k) . 
(4) When W_ =0 then R,(k) = -Rz(k). 
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It is clear from these remarks that if one of the partner potentials is a constant potential (i.e. a free 
particle), then the other partner will be of necessity reflectionless. In this way we can understand the 
reflectionless potentials of the form V(X) = Asech*ax which play a critical role in understanding the 
soliton solutions of the KdV hierarchy. Let us consider the superpotential 

W(x) = A tanhax. 

The two partner potentials are 

(32) 

&=A*-A(A+a&)sech*ux, 

V,=A’-A(A-n&)sech*nx (33) 

We see that for A = (~ti/&, V,(x) corresponds to a constant potential so that the corresponding 
V, is a reflectionless potential. It is worth noting that Vi is h-dependent. One can in fact rigorously 
show,though it is not mentioned in most text books,that the reflectionless potentials are necessarily 
h-dependent. 

So far we have discussed SUSY QM on the full line (--00 < x < 00). Many of these results have 
analogs for the n-dimensional potentials with spherical symmetry. For example, in three dimensions 
one can make a partial wave expansion in terms of the wave functions: 

Then it is easily shown [ 1261 that the reduced radial wave function R satisfies the one-dimensional 
Schrijdinger equation (0 < r < 00) 

ii2 d'+(r) 
--- + IV(r) + 

Z(E + l)@ 

2m dr* 
2mr2 1$(r) = E@(r) (35) 

We notice that there is an effective one dimensional potential which contains the original potential 
plus an angular momentum barrier. The asymptotic form of the radial wave function for the I’th 

partial wave is 

cCl(r, I) -+ &[S’(k’)e”.’ _ (_l)le-ik’r], (36) 

where S1 is the scattering function for the Z’th partial wave. i.e. S’(k) = &‘I(~) and 6 is the phase shift. 
For this case we find the relations: 

(37) 

Here W+ = W(r + co). 
We thus have seen that when Hi contained a known ground state wave function then we could 

factorize the Hamiltonian and find a SUSY partner Hamiltonian Hz, Now let us consider the converse 
problem. Suppose we are given a superpotential W(x). In this case there are two possibilities. The 
candidate ground state wave function is the ground state for Hi (or Hz) and can be obtained from: 
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At&‘)(x) =0 + &“(x) = Nexp 

At+A2)(x) = 0 + t,bi2’(x) = Nexp (38) 

By convention, we shall always choose W in such a way that amongst Hi, H2 only H, (if at all) 
will have a normalizable zero energy ground state eigenfunction. This is ensured by choosing W such 
that W(x) is positive (negative) for large positive (negative) X. This defines HI to have fermion 
number zero in our later formal treatment of SUSY. 

If there are no normalizable solutions of this form, then HI does not have a zero eigenvalue and 
SUSY is broken. Let us now be more precise. A symmetry of the Hamiltonian (or Lagrangian) can 
be spontaneously broken if the lowest energy solution does not respect that symmetry, as for example 
in a ferromagnet, where rotational invariance of the Hamiltonian is broken by the ground state. We 
can define the ground state in our system by a two dimensional column vector: 

For SUSY to be unbroken requires 

Q/o) = Q+lo> = OlO> (40) 

Thus we have immediately from Eq. ( 18 ) that the ground state energy must be zero in this case. 
For all the cases we discussed previously, the ground state energy was indeed zero and hence the 
ground state wave function for the matrix Hamiltonian can be written: 

(41) 

where $$“(x) is given by Eq. (38). 
If we consider superpotentials of the form 

W(X) =gP, (42) 

then for n odd and g positive one always has a normalizable ground state wave function. However for 
the case IZ even and g arbitrary, then there is no normalizable ground state wave function. In general 
when one has a superpotential W(x) so that neither Q nor Qt annihilates the ground state as given 
by Eq. (39) then SUSY is broken and the potentials V, and b have degenerate positive ground state 
energies. Stated another way, if the ground state energy of the matrix Hamiltonian is non zero then 
SUSY is broken. For the case of broken SUSY the operators A and At no longer change the number 
of nodes and there is a l-l pairing of all the eigenstates of HI and Hz. The precise relations that one 
now obtains are: 

E(2) = E(l) > 0 n=0,1,2,... 

$:2) = &]-i&i), 
(43) 

(44) 
@ = [E;2)]-1/2At@;2). (45) 
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while the relationship between the scattering amplitudes is still given by Eqs. (30) or (37). The 
breaking of SUSY can be described by a topological quantum number called the Witten index [ 121 
which we will discuss later. Let us however remember that in general if the sign of W(x) is opposite 
as we approach infinity from the positive and the negative sides, then SUSY is unbroken, whereas in 
the other cases it is always broken. 

2.1. State space structure of the SVSY harmonic oscillator 

For the usual quantum mechanical harmonic oscillator one can introduce a Fock space of boson 
occupation numbers where we label the states by the occupation number n. To that effect one 
introduces instead of P and ~7 the creation and annihilation operators a and a+. The usual harmonic 

oscillator Hamiltonian is 

‘F1= g + tmo2q2. (46) 

Let us rescale the Hamiltonian in terms of dimensionless coordinates and momenta x and p so that 
we measure energy in units of tiw. We put 

‘12 

If= Htiw, q= & x, 
( ) 

P = (2mlio)‘f2p. 

Then 

H= (p2+ $x2), [x,p] =i. 

Now introduce 

(47) 

a=(G+ip), a+=(;--ip). 

Then 

(49) 

[a,~+] = 1, [N,a] =-a, [N,a+] =a+, 

N = ata, H=N+& (50) 

The usual operator formalism for solving the harmonic oscillator potential is to define the ground 
state by requiring 

alO> = 0, (51) 

which leads to a first order differential equation for the ground state wave function. The II particle 
state (which is the n’th excited wave function in the coordinate representation) is then given by: 

(52) 

where we have used the subscript b to refer to the boson sector as distinct from the fermions we will 
introduce below. For the case of the SUSY harmonic oscillator one can rewrite the operators Q ( Q + ) 
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as a product of the bosonic operator a and the fermionic operator $. Namely we write Q = a$+ and 
Q+ = a+$ where the matrix fermionic creation and annihilation operators are defined via: 

+=u+= ; :, ) 

[ I (53) 

@+ [ 0 0 =a-= 1 0 1 . (54) 

Thus @ and $+ obey the usual algebra of the fermionic creation and annihilation operators, namely, 

(fit&> = 1, {(Cr+?(Fl+} = {@,fi} =O, (55) 

as well as obeying the commutation relation: 

E*,cCl+l =(73 = 

The SUSY Hamiltonian 

H=QQ++Q+Q= 

can be rewritten in the form 

(--g+;)+,,,. 

(56) 

(57) 

The effect of the last term is to remove the zero point energy. 
The state vector can be thought of as a matrix in the Schrodinger picture or as the state jnb, nf) in 

this Fock space picture. Since the fermionic creation and annihilation operators obey anti-commutation 
relations hence the fermion number is either zero or one. As stated before, we will choose the ground 
state of HI to have zero fermion number. Then we can introduce the fermion number operator 

1 - CT3 nF=-= l- w4+1 
2 2 . 

(58) 

Because of the anticommutation relation, nf can only take on the values 0 and 1. The action of 
the operators a, at, (I/, $t in this Fock space are then: 

01% nf> = 1% - 1, q), fit%, q) = 1% nf - l), 

a+(%, q) = I& + 1, y), et 1% q) = (% nf + 1). (59) 

We now see that the operator Q+ = -ia@+ has the property of changing a boson into a fermion 

without changing the energy of the state. This is the boson-fermion degeneracy characteristic of all 
SUSY theories. 

For the general case of SUSY QM, the operator a gets replaced by A in the definition of Q, Q+, 
i.e. one writes Q = Afit and Q+ = A+t,b. The effect of Q and Q+ are now to relate the wave functions 
of HI and Hz which have fermion number zero and one respectively but now there is no simple Fock 
space description in the bosonic sector because the interactions are non-linear. Thus in the general 
case, we can rewrite the SUSY Hamiltonian in the form 
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This form will be useful later when we discuss the Lagrangian formulation of SUSY QM in Section 

8. 

2.2. Broken super-symmetry 

As discussed earlier, for SUSY to be a good symmetry, the operators Q and Qt must annihilate 
the vacuum. Thus the ground state energy of the super-Hamiltonian must be zero since 

H = {Q+, Q}. 

Witten [ 121 proposed an index to determine whether SUSY is broken in supersymmetric field theories. 

The index is defined by 

n = Tr(-l)F, (61) 

where the trace is over all the bound states and continuum states of the super-Hamiltonian. For SUSY 
QM, the fermion number IZ~ 3 F is defined by i [ 1 - u3] and we can represent (-1)” by the matrix 
g3. If we write the eigenstates of H as the vector: 

(62) 

then the Z!Z corresponds to the eigenvalues of ( - 1) F being f 1. For our conventions the eigenvalue + 1 
corresponds to H, and the bosonic sector and the eigenvalue -1 corresponds to H2 and the fermionic 
sector. Since the bound states of HI and H2 are paired, except for the case of unbroken SUSY where 
there is an extra state in the bosonic sector with E = 0 we expect for the quantum mechanics situation 
that n = 0 for broken SUSY and n = 1 for unbroken SUSY. In the general field theory case, Witten 
gives arguments that in general the index measures N, (E = 0) - N_ (E = 0) which is the difference 
n between the number of Bose states and Fermi states of zero energy. In field theories the Witten 
index needs to be regulated to be well defined so that one considers instead 

n(p) = Tr(-l)Fe-PH, (63) 

which for SUSY quantum mechanics becomes 

n(,f3) = Tr[ ePPHI - e--PH2]. (64) 

In field theory it is quite hard to determine if SUSY is broken non-perturbatively, and thus 
SUSY quantum mechanics became a testing ground for finding different methods to understand non- 
perturbative SUSY breaking. In the quantum mechanics case, the breakdown of SUSY is related to 
the question of whether there is a normalizable wave function solution to the equation QlO) = O(O) 
which implies 

$rO (x) = Ne-S W(x)dx. (65) 

As we said before, if this candidate ground state wave function does not fall off fast enough at 
foe then Q does not annihilate the vacuum and SUSY is spontaneously broken. Let us show using 
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a trivial calculation that for two simple polynomial potentials the Witten 
the correct answer to the question of SUSY breaking. Let us consider 

index does indeed provide 

n(p) = Tra3 / [ ‘;;I e-P[P2/2+w2/2-c+Sw’(X)/2. 

Expanding the term proportional to us in the exponent and taking the trace we obtain 

A(P) = / [F] e-prp2/2+WZ/2sinh( /?W’(x) /2), 

We are interested in the regulated index as /? tends to 0, so that practically we need to evaluate 

n(p) = J [F] f?-~‘p2’2+~2’21(pw’(X)/2). 

(66) 

(67) 

(68) 

If we directly evaluate this integral for any potential of the form W(x) = gx2*+‘, which leads to a 
normalizable ground state wave function, then all the integrals are gamma functions and we explictly 
obtain A = 1. If instead W(x) = gx2” so that the candidate ground state wave function is not 
normalizable then the integrand becomes an odd function of x and therefore vanishes. Thus we see 
for these simple cases that the Witten index immediately coincides with the direct method available 
in the quantum mechanics case. 

Next let us discuss a favorite type of regularization scheme for field theory - namely the heat 
kernel method. (Later we will discuss a path integral formulation for the regulated Witten index). 

Following Akhoury and Comtet [ 161 one defines the heat kernels K* (x, y; ,B) which satisfy 

d -- 
d/J 

-$ + W2 7 W’ K* = 0. 

These have the following eigenfunction representation: 

K% (x, y; P> = (~le-~~* Ix) 

(69) 

(70) 

In terms of the heat kernels one has 

n(P) = /MK+( X,-G/~) - K-(x,x;P)l, 

or 

A(p) = N+(E = 0) - N_(E = 0) + mdEe-pE(p+(E) - p_(E)), 
s 
ED 

(71) 

where p+ corresponds to the density of states. What Akhoury and Comtet were able to show, was 
that in cases when W(x) went to different constants at plus and minus infinity, then the density of 
states factors for the continuum did not cancel and that A(,@ could depend on p and be fractional 
at p = 0. We refer the interested reader to the original paper for further details. 
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Another non-perturbative method for studying SUSY breaking in field theory is to explicitly break 
SUSY by placing the theory on a lattice and either evaluating the path integral numerically or via some 
lattice non weak- perturbative method such as the strong coupling (or high temperature) expansion. 
This method was studied in detail in [ 13,211 and we will summarize the results here. The basic idea 
is to introduce a new parameter, namely the lattice spacing a. This parameter explicitly breaks SUSY 

so that the ground state energy of the system will no longer be zero, even in the unbroken case. One 
hopes that as the lattice spacing is taken to zero then the ground state energy will go to zero as a 
power of the lattice spacing if SUSY is unbroken, that is we expect 

&)(a) = cay, (72) 

where y is a critical index which if greater than zero should be easy to measure in a Monte Carlo 
calculation. Measuring the ground state energy at two different lattice spacings one studies: 

&(a’) ln< 
y=ln--- 

I Eo(a) a 
(73) 

in the limit a’ and a -+ 0. The case of broken SUSY is more difficult because then we expect y = 0 
which is a hard measurement to make numerically. In this latter case it is easier to directly measure 
the ground state energy and show that it remains non-zero as one takes the lattice spacing to zero. 
To see how this works in quantum mechanics one can do a lattice strong coupling expansion of the 
Langevin equation which allows one to determine the ground state wave function of Ht as we shall 

show later. 
For the superpotential W(X) = gx3, we expect to find a positive critical index since here the 

candidate ground state wave function is proportional to e-gx4/4 and is normalizable. The ground state 
expectation values of X” for the Hamiltonian Hr can be determined by first solving the Langevin 

equation 

$ + W(x) = r](t) (74) 

and then averaging x(7(t) ) over Gaussian noise whose width is related to h. Since by the virial 
theorem 

E. = 3g2 (x”) - 3g(x2), 

knowing the correlation functions will allow us to calculate the ground state energy. We first put the 
Langevin equation on a time lattice (t, = na) : 

E(X, - x,-1) + gx3 = rlnr (75) 

where E = l/u, which allows a solution by strong coupling expansion for large g. The result is 

rln c > l/3 

xn= - 

g 
+ 3g2/3 

-(r/;!3,77,-*/3 - q,'J3) + 0(E2>. (76) 

As we will demonstrate in Section 8, the quantum mechanical expectation values of < x”(t) > are 
the same as the noise averaged expection values of x,,(q) 

(77) 
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On the lattice the path integral becomes a product of ordinary integrals which can be performed with: 

(78) 

The ground state energy on the lattice regulated theory then has the form 

E. = Jsz -&nz’, (79) 
n=o 

where 

is a dimensionless length. The critical index can be determined from the logarithmic derivative of E,, 
with respect to z. Using PadC approximants to extrapolate the lattice series to small lattice spacing 
we found that [ 211 

E. = ca’.16 (80) 
verifying that SUSY is unbroken in the continuum limit. Using the same methods for the case 

W(x) = 8x2/2 we were able to verify that the ground state energy was not zero as we took the 
continuum limit. After verifying the applicability of this method in SUSY QM, Bender et al. then 
successfully used this method to study non-perturbative SUSY breaking in Wess-Zumino models of 
field theory [ 131. 

3. Factorization and the hierarchy of Hamiltonians 

In the previous section we found that once we know the ground state wave function corresponding 
to a Hamiltonian Hi we can find the superpotential Wr (x) from Eq. (6). The resulting operators Al 
and Al obtained from Eq. (4) can be used to factorize Hamiltonian Hr. We also know that the ground 
state wave function of the partner Hamiltonian H2 is determined from the first excited state of HI via 
the application of the operator A,. This allows a refactorization of the second Hamiltonian in terms of 
IV,. The partner of this refactorization is now another Hamiltonian H3. Each of the new Hamiltonians 
has one fewer bound state, so that this process can be continued until the number of bound states 
is exhausted. Thus if one has an exactly solvable potential problem for HI, one can solve for the 
energy eigenvalues and wave functions for the entire hierarchy of Hamiltonians created by repeated 
refactorizations. Conversely if we know the ground state wave functions for all the Hamiltonians in 
this hierarchy, we can reconstruct the solutions of the original problem. Let us now be more specific. 

From the last section we have seen that if the ground state energy of a Hamiltonian HI is zero then 
it can always be written in a factorizable form as a product of a pair of linear differential operators. 
It is then clear that if the ground state energy of a Hamiltonian HI is Ei” with eigenfunction +i” 
then in view of Eq. (3), it can always be written in the form (unless stated otherwise, from now on 
we set h = 2m = 1 for simplicity): 

H, = AtAl + E;,” = -$+w, (81) 
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where 

AI = $ +W,(x), A;=--$+W,(x), 
d In$~” 

WI(X) =- & . (82) 

The SUSY partner Hamiltonian is then given by 

&=A,Ai+E,, (1) =-$+v,(x), (83) 

where 

V*(x) = Wf + W: + I$” = V,(x) + 2W;’ = Vj (x) - 2$ In$i”. (84) 

We will introduce the notation that in Ei”), rz denotes the energy level and (m) refers to the m’th 
Hamiltonian H,. From Sec. 2, the energy eigenvalues and eigenfunctions of the two Hamiltonians 
H, and Hz are related by 

,$:‘, = E;*‘, @A*) = (E;:‘, - E;.“)-‘/*A&,. (85) 

Now starting from HZ whose ground state energy is Ei2’ = E,“’ one can similarly generate a third 
Hamiltonian H3 as a SUSY partner of HZ since we can write HZ in the form: 

t 
H2=4A,+E0 “I = A;A2 + El”, (86) 

where 

A2 =$+W,(x), A; = -$ + W*(x), 
d In $;*I 

W*(x)=- dx ’ (87) 

Continuing in this manner we obtain 

H3 = A2A; + E, (1) =-$+v,(x), (88) 

where 

v,(x) = w; + W; + El” = vz(x) - 2-$Wi*) 

= V,(X) - 2-$ln($$“@$*)), (89) 

Furthermore 

E’3’ = EC21 - ,I$‘) - 

#i3, = g, _ 

llf29 

Ei2’) -r/*A2$;;; 

= (E$ _ El”) +( E;;\ - E;“) -“*A2A,@$ (90) 

In this way, it is clear that if the original Hamiltonian H, has p (2 1) bound states with eigenvalues 
E(l), and eigenfunctions qQ:r’ 
(i - 1) Hamiltonians H2, 

with 0 5 IE 5 (p - I), then we can always generate a hierarchy of 
. . . , HP such that the m’th member of the hierarchy of Hamiltonians (H,,,) 
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has the same eigenvalue spectrum as Ht except that the first (m - 1) eigenvalues of HI are missing 
in H,. In particular, we can always write (m = 2,3, . . . , p ) : 

H, = A;A, +E;;!, = -$ + Vm(x), (91) 

where 

4, = $ + wm(x), 
d In+!@‘) 

Wm(x> = - dx f (92) 

One also has 

E”“’ = ,@+I) = . . . = E7;;,_1, 
n ntl 

$(“‘) = (E;;),_, - Ec12)-‘f2.. . (E;;‘,_, - E$*))-‘/2A,_, . . .A&,‘:‘,_, 
n 

V,(x) = V,(x) - 2$ln(&t’ . . .&-‘1). (93) 

In this way, knowing all the eigenvalues and eigenfunctions of HI we immediately know all the 
energy eigenvalues and eigenfunctions of the hierarchy of p - 1 Hamiltonians. Further the reflection 
and transmission coefficients (or phase shifts) for the hierarchy of Hamiltonians can be obtained in 
terms of RI, Tl of the first Hamiltonian HI by a repeated use of Eq. (30). In particular we find 

where k and k’ are given by 

k = [E- (W”‘)2]1/2, 

(94) 

(95) 

4. Shape invariance and solvable potentials 

Most text books on quantum mechanics describe how the one dimensional harmonic oscillator 
problem can be elegantly solved using the raising and lowering operator method. Using the ideas of 
SUSY QM developed in Section 2 and an integrability condition called the shape invariance condition 
[44], we now show that the operator method for the harmonic oscillator can be generalized to the 
whole class of shape invariant potentials (SIP) which include all the popular, analytically solvable 
potentials. Indeed, we shall see that for such potentials, the generalized operator method quickly yields 
all the bound state energy eigenvalues, eigenfunctions as well as the scattering matrix. It turns out 
that this approach is essentially equivalent to Schrodinger’s method of factorization [49,14] although 
the language of SUSY is more appealing. 

Let us now explain precisely what one means by shape invariance. If the pair of SUSY partner 
potentials &,2(x) defined in Section 2 are similar in shape and differ only in the parameters that 
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appear in them, then they are said to be shape invariant. More precisely, if the partner potentials 

V,,, ( X; al ) satisfy the condition 

V2(KUl) = K(xa2) +Na,), (96) 

where aI is a set of parameters, u2 is a function of al (say u2 = f(ui)) and the remainder R(ul) is 
independent of x, then VI (x; al) and V,(x; al) are said to be shape invariant. The shape invariance 
condition (96) is an integrability condition. Using this condition and the hierarchy of Hamiltonians 
discussed in Section 3, one can easily obtain the energy eigenvalues and eigenfunctions of any SIP 
when SUSY is unbroken. 

4.1. General formulas for bound state spectrum, wave functions and S-matrix 

Let us start from the SUSY partner Hamiltonians Hi and Hz whose eigenvalues and eigenfunctions 
are related by SUSY. Further, since SUSY is unbroken we know that 

Eh’)(ui) = 0, &‘)(~;a~) = Nexp [- jWi(%ui)&] . (97) 

We now show that the entire spectrum of Hi can be very easily obtained algebraically by using 
the shape invariance condition (96). To that purpose, let us construct a series of Hamiltonians H,, 
s = 1,2,3,... In particular, following the discussion of the last section it is clear that if HI has p 
bound states then one can construct p such Hamiltonians HI, H2, . . . , HP and the n’th Hamiltonian 
H, will have the same spectrum as HI except that the first n - 1 levels of HI will be absent in H,. 
On repeatedly using the shape invariance condition (96)) it is then clear that 

H$=-$ 
s-l 

+ Vl(x;u,) + CR(Uk), 
kl 

(98) 

where a, = f”-’ (al ) i.e. the function f applied s - 1 times. Let us compare the spectrum of H, and 
H s+l. In view of Eqs. (96) and (98) we have 

H s+l =-$+v,(x;us+,) +&(uk) 
k=I 

= -$ + V,(x;a,) + gR(ak). 

k=l 

(99) 

Thus H, and H,+l are SUSY partner Hamiltonians and hence have identical bound state spectra 
except for the ground state of H, whose energy is 

s-l 
Eis’ = OR. 

k=l 

(100) 

This follows from Eq. (98) and the fact that E, (‘I - 0 On going back from H, to H,_, etc, we would - . 
eventually reach H2 and HI whose ground state energy is zero and whose n’th level is coincident 
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with the ground state of the Hamiltonian H,,. Hence the complete eigenvalue spectrum of Hi is given 

bY 

E,;(~I) = kR(n,); E,-(a,) = 0. (101) 
k=l 

We now show that, similar to the case of the one dimensional harmonic oscillator, the bound state 
wave functions (cln(l) (x; al) for any shape invariant potential can also be easily obtained from its 
ground state wave function +$” (x; ai) which in turn is known in terms of the superpotential. This 
is possible because the operators A and A+ link up the eigenfunctions of the same energy for the 
SUSY partner Hamiltonians H i,*. Let us start from the Hamiltonian H, as given by Eq. (98) whose 
ground state eigenfunction is then given by @i”(x; a,). On going from H, to Hs_I to Hz to HI and 
using Eq. (14) we then find that the n’th state unnormalized, energy eigenfunction $A’)(x; al) for 
the original Hamiltonian HI (x; al) is given by 

fi;l)(x;a,) 0; A+(x;a,)A+(x;a2) ~~~A+(x;u,)~~‘~(x;u,+~), (102) 

which is clearly a generalization of the operator method of constructing the energy eigenfunctions for 
the one dimensional harmonic oscillator. 

It is often convenient to have explicit expressions for the wave functions. In that case, instead of 
using the above equation, it is far simpler to use the identify [46] 

t,b;“(x;ul) =A+(x;u~)@;!?,(wd. (103) 

Finally, it is worth noting that in view of the shape invariance condition (96), the relation (30) 
between scattering amplitudes takes a particularly simple form 

R, (k ~1) = 
W_(Q) + ik 

W_(Q) - ik > 
Rl(k;ud, 

T,(k;a,) = 
W+(al) - ik’ 

W_(a,) - ik > 
T,(k;ud, (105) 

thereby relating the reflection and transmission coefficients of the same Hamiltonian HI at al and 

a2(= f(Q>>. 

4.2. Shape invariance in more than one step 

We can expand the list of solvable potentials by extending the shape invariance idea to the more 
general concept of shape invariance in two and even multi-steps. We shall see later that in this way 
we will be able to go much beyond the factorization method and obtain a huge class of new solvable 
potentials [ 591. 

Consider the unbroken SUSY case of two superpotentials W(x; al) and @(x; al) such that 
V, (x; al) and fl (x; al) are same up to an additive constant i.e. 

V,(X;G) = q(x;a,) +R(Q) (106) 

or equivalently 

W2(x;al) + W’(x;u,) = l?2(~;u,) - @‘(~;a,) + R(q). (107) 
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Shape invariance in two steps means that 

V;(GQ) = K(x;a2) +Rad, 

that is 

(108) 

tV(x; a,) + IV(x; a,) = W2(x; u2) - W’(x; u2) + I?(u,). (109) 

We now show that when this condition holds, the energy eigenvalues and eigenfunctions of the 
potential V, (x; aI ) can be obtained algebraically. First of all, let us notice that unbroken SUSY implies 
zero energy ground states for the potentials V, (x; aI) and fi (x; al) : 

Ep(q) = 0, Ep(a,) = 0. (110) 

The degeneracy of the energy levels for the SUSY partner potentials yields 

E(2)(u~) = @,(a,); n E;2’(al) = E$J&l,). 

From Eq. (106) it follows that 

IP2’(uJ = B”‘(U,) + R(u,) n n 3 

so that for n = 0, these two equations yield 

E[‘)(uJ = I?($). 

Also, the shape invariance condition (108) yields 

JV’(Ul) = E”‘(U2) + I?(&). n n 

From the above equations one can then show that 

E;::(ur) = E;l’,(a:!) +&a,) + Ru,). 

On solving these questions recursively we obtain (n = 0, 1,2, J . . I 

+ W&t,l). 

(111) 

(112) 

(113) 

(114) 

(11% 

(116) 

(117) 

We now show that, similar to the discussion of the last subsection, the bound state wave functions 
$(‘) (x; al) can also be easily obtained in terms of the ground state wave functions I,@‘) (x; al) and 
-?r, & (x; aI ) which in turn are known in terms of the superpotentials W and w. In particular from Eq. 
(106) it follows that 

rC/;;;(x;ur) 0: A+(x;~,)t,b~~‘(x;u~) 0: A+(x;u,)~~‘)(x;u,), 

while from Eq. ( 108) we have 

(118) 

&;)1(X;ur) cc ij+(x;u,)@)(X;u~) 0; ij+(x;u,)$~“(x;u~). (119) 
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Hence on combining the two equations we have the identity 

#;‘,(:;(~;a~) 0; A+(x;a,)~+(x;a,)~~‘~(x;u~). 

Recursive application of the above identity yields 

293 

(120) 

where we have used the fact that 

t,hll(‘)(x; a,) 0: A+(x; a,)&‘)(~; al). (123) 

Finally, it is easily shown that the relation (30) between the scattering amplitudes takes a particu- 
larly simple form 

Rl(kh) = 
W_(Q) + ik Iv-(al) + ik 

W_(u*) - ik I%-(q) - ik 
R1(ka2), 

T,(k;ul) = 
W+(u,) - ik’ @+(a,) - ik’ 

W_(q) - ik l?‘_(q) - ik 
Tl(k;uz), 

(124) 

(125) 

thereby relating the reflection and transmission coefficients of the same Hamiltonian at ai and u2. 
It is clear that this procedure can be easily generalized and one can consider multi-step shape 

invariant potentials and in these cases too the spectrum, the eigenfunctions and the scattering matrix 
can be obtained algebraically. 

4.3. Strategies for categorizing shape invariant potentials 

Let us now discuss the interesting question of the classification of various solutions to the shape 
invariance condition (96). This is clearly an important problem because once such a classification 
is available, then one discovers new SIPS which are solvable by purely algebraic methods. Although 
the general problem is still unsolved, two classes of solutions have been found and discussed. In the 
first class, the parameters al and u2 are related to each other by translation (a2 = al + cr) [52,53]. 
Remarkably enough, all well known analytically solvable potentials found in most text books on 
nonrelativistic quantum mechanics belong to this class. Last year, a second class of solutions was 
discovered in which the parameters al and u2 are related by scaling (~22 = +zl) [ 58,591. 

4.3. I. Solutions involving translation 
We shall now point out the key steps that go into the classification of SIPS in case u2 = al + LY 

[52]. Firstly one notices the fact that the eigenvalue spectrum of the Schrodinger equation is always 
such that the n’th eigenvalue E,, for large n obeys the constraint [ 1331 

l/n2 5 E,, 5 n2, (126) 
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where the upper bound is saturated by the square well potential and the lower bound is saturated by 
the Coulomb potential. Thus, for any SIP, the structure of E,, for large IZ is expected to be of the form 

En- c Cnna, -25a52. 
a 

Now, since for any SIP, E, is given by Eq. (lOl), it follows that if 

(127) 

R(G) N c kY (128) 

then 

-35y51. (129) 

How does one implement this constraint on R(ak)? While one has no rigorous answer to this 
question, it is easily seen that a fairly general factorizable form of W(x; al) which produces the 
above k-dependence in R(ak) is given by 

W(x; al 1 = k(ki + Ci)gi(X> + h,(x)/< ki + ci) + fi(x) (130) 
i=l 

where 

al = (h, k2,. . .I, a2= (kl +cw,k2+/3,...) (131) 

with ci, a, j? being constants. Note that this ansatz excludes all potentials leading to En which contain 
fractional powers of n. On using the above ansatz for W in the shape invariance condition (96) 
one can obtain the conditions to be satisfied by the functions gi( x) , hi(x) , fi( X) e One important 
condition is of course that only those superpotentials W are admissible which give a square integrable 
ground state wave function. It turns out that there are no solutions in case m 2 3 in Eq. (130), while 
there are only two solutions in case m = 2 i.e. when 

W-w) = (h + cdgdx) + (k2 + c2)g2(x) + fd.G, (132) 

which are given by 

W(r;A, B) = Atanhar - Bcothcwr, A > Z3 > 0, (133) 

and 

W(x;A,B) =Atanax-Bcotax; A,B>O, (134) 

where 0 < x < 7r/2a and $(x = 0) = $(x = 7r/2a) = 0. For the simplest possibility of m = 1, one 
has a number of solutions to the shape invariance condition (96). In Table 4.1, we give expressions 
for the various shape invariant potentials V, (x) , superpotentials W(x) , parameters al and a2 and the 
corresponding energy eigenvalues EL’) [ 54,551. 

As an illustration, let us consider the superpotential given in Eq. ( 134). The corresponding partner 
potentials are 
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v, tx; A, B) = -(A + B)* + A(A - a) sec2ax + B(B - a)cosec*ax, 

VZ(X; A, B) = -(A + B)* + A(A + a) set* ax + B(B + a)cosec*ax. (135) 

VI and V2 are often called Poschl-Teller I potentials in the literature. They are shape invariant partner 
potentials since 

V,(x;A,B) =Vi(x;A+a,B+a) +(A+B+2a)*- (A+B)* (136) 

and in this case 

{a~}=(A,B);{a2}=(A+~,B+a),R(a~)=(A+B+2a)*-(A+B)*. (137) 

In view of Eq. (lOl), the bound state energy eigenvalues of the potential V, (x; A, B) are then given 

bY 

E;” = =&‘(a,) = (A + B + 2ncr)* - (A + B)*. (138) 
k=l 

The ground state wave function of V, (x; A, B) is calculated from the superpotential W as given by 

Eq. (134). We find 

@i”(x;A, B) cx (cosax)S(sincux)A 

where 

(139) 

s = A/a; h = B/CL (140) 

The requirement of A, B > 0 that we have assumed in Eq. (134) guarantees that &” (x; A, B) is 
well behaved and hence acceptable as x -+ 0,~/2a. Using this expression for the ground state wave 
function and Eq. ( 103) one can also obtain explicit expressions for the bound state eigenfunctions 
@A’) (x; A, B). In particular, in this case, Eq. (103) takes the form 

&II--C {a& = (-2 + Atanax - Bcotax 
> 

+4,+,(x; {a*}). (141) 

On defining a new variable 

y = 1 - 2 sin* ffx (142) 

and factoring out the ground state state wave function 

cGr,(Yi {al)> = (clo(Yi {dWn(Y; h)) (143) 

with tie being given by Eq. (139), we obtain 

R,(y; A.B) = a( 1 - y’) dR,_1 (y; A + a, B + a) 
dy 

+ [(A- B) - (a+B+cu)ylR,-l(y;A+cr,B+cu). (144) 

It is then clear [46] that R, ( y; A, B) is proportional to the Jacobi polynomial so that the unnor- 
malized bound state energy eigenfuncti ons for this potential are 

&,(y;A, B) = (1 - y)‘/*(l +y)“‘2P,“-‘/2,“-‘/2(y). (145) 
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Table 4.1 
All known shape invariant potentials in which the parameters u2 and al are related by a translation (~2 = al + a). The 
energy eigenvalues and eigenfunctions are given in units fi = 2m = 1. The constants A, B, (Y, OJ, 1 are all taken 2 0. Unless 
otherwise stated, the range of potentials is --co 5 x 5 00, 0 5 r 5 CO. For spherically symmetric potentials, the full wave 
function is &,lrn ( r, 0,4) = cCr,l( r) &( 0, 4). Note that the wave functions for the first four potentials (Hermite and Laguerre 

Name of potential Super potential W(x) Potential VI (x; al ) al 

shifted oscillator 

three dimensional 

oscillator 

+x-b 

(I+ 1) itir------ 
r 

f W’ 012 0 

+w2r2 + v - (1+3/2)0 1 

Coulomb 
e2 cl+11 --- 

2(Z+ 1) r 
- rf+7 ____ &l(-tl) e4 

+ 4(1+ 1>2 
1 

Morse A - Bexp(-ax) A2 + B2 exp( -2ax) - 2B(A + a/2) 
x exp( -ax) 

A 

Scarf II 
(hyperbolic) 

A tanh (YX + B sech (YX A2 + ( BZ - A* - Aa)sech2ax 
+B (2A + a) sech LYX tanh (YX 

A 

Rosen-Morse II 
(hyperbolic) 

A tanh LYX + B/A 
(B < A’) 

A2 f B* jA2 - A( A + a)sech2cYx 
+ 2B tanh (YX 

A 

Eckart -A coth cu + B/A 
(B > A2) 

A2 + B2/A2 + A( A - (~)cosech~crr 
- 2B coth ar 

A 

Scarf I 
(trigonometric) 

-A tan (YX + B set ax 
(-$T<ax< ;7r, 

-A* + (A2 + B2 - Aa)sec2ax 
- B(2A - a) tanaxsecax 

A 

generalized Piischl- 
Teller 

A coth ar - B cosech cyr 

(A < B) 

A2 + ( B2 + A2 + Aa)cosect?ar 
- B (2A + a) coth ar cosech ar 

A 

Rosen-Morse I 
(trigonometric) 

-Acotax - B/A 
(0 < (Yx < 7r) 

A(A - (~)cose2ax + 2Bcotax 
- A* + B2/A2 

A 

The procedure outlined above has been applied to all known SIPS [46,125] and the energy eigen- 
functions $j’) (y) have been obtained in Table 4.1, where we also give the variable y for each 
case. 

Several remarks are in order at this time. 
(i) The PGschl-Teller I and II superpotentials as given by Eqs. ( 134) and ( 133) respectively have 

not been included in Table 4.1 since they are equivalent to the Scarf I (trigonometric) and 
generalized Pijschl-Teller superpotentials 

W, = -Atanax+Bsecax, 
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polynomials) are special cases of the confluent hypergeometric function while the rest (Jacobi polynomials) are special 
cases of the hypergeometric function. Fig. 5.1, taken from Ref. [ 1291, shows the inter-relations between all the SIPS in the 
table via point canonical coordinate transformations. 

a2 Eigenvalue I?,$” Variable y Wave function &(y) 

w nw y= (+))‘/2 x- I?! ( > 0 
exp(-$*)Hdy) 

If1 2nw y = +r2 y(‘+‘)12 exp( _ iv) LI;c’/Z( y) 

( 

1 1 2 

1+1 

e4 
-- 

;T (Ifl)Z (n+l+ 1)2 > y= (n+Y+l) 
y’+‘exp(-$y)Li’+‘(y) 

A-a A2 - (A -n(u)’ y = ( ~B/LY) exp( --ax), Y S-Rexp( -$y)LF-*“(y) 
s=A/a 

A-a A2 - (A - na)* y = sinh (YX, i” ( 1 + y*) -S/2 exp( -A tan-’ y) 

s = A/a, A = B/a x p""-s-'/2,-'A-s-1/2)(iy) 
n 

A-a A2 - (A - n(u)’ + B2/A2 y = tanhcyn, ( 1 _ y) (s-n+0)/2 ( 1 + y) (s-n-n)/2 

- B’/(A - TUY)~ s = Ala, A = B/cx2, x pb-Rfw-n-a) Cy) 
n 

a = A/(s - n) 

AS-a A2 - (A + n(u)’ + B2/A2 y = coth Lyr, ty _ l)-(s+n-n)/2(Y + l)-_(s+n+a)/* 

- B*/( A + na)* s = A/a, A = B/a’, x P~-S-“+“‘-S-“-R) 
(Y) 

a = A/(n + s) 

Afa (A + na)’ - A* y = sin ffx, ( 1 _ y) (s-A)/2 ( 1 + y) (s+A)/z 

s=A/a, A=B/a x p~s-A-1/2,s+A-l/2) cy) 
n 

A-a A2 - (A -n(u)’ y = cash ur, (y _ 1)b’-~‘/2(~ + l)-(“+s)/2 

s=AIa, A=B/a x P(A--s--1/2.-A--s--l/2) (y) 
n 

A+a (A + n(u)’ - A2 + B2/A2 y = icot ffx ( y2 - 1) 4s+n)‘2 exp( arux) 
_ B2/(A + FKX)~ s=A/cu, A=B/a’, x p(--s--n+in.--s--n-in) ( y) 

n 
a=A/(s+n) 

W, = A coth LYT - B cosech CU, 

by appropriate redefinition of the parameters [ 951. For example, one can write 

(146) 

(147) 

(ii) 
which is just the PGschl-Teller II superpotential of Eq. (133) with redefined parameters. 
Throughout this section we have used the convention of ti = 2m = 1. It would naively appear 
that if we had not put ti = 1, then the shape invariant potentials as given in Table 4.1 would 
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all be h-dependent. However, it is worth noting th?t in each and every case, the h-dependence 
is only in the constant multiplying the x-dependent function so that in each case we can 
always redefine the constant multiplying the function and obtain an h-independent potential. 
For example, corresponding to the superpotential given by Eq. ( 134)) the h-dependent potential 
is given by (2m = 1) 

V,(x;A,B) =W2-hW’ = -(A + B)’ + A(A + hcu) sec2 ax 

+ B ( B + ha) cosec2ax. 

On redefining 

(148) 

A(A+hia) =a; B(B+tia) =b, (149) 

where a, b are h-independent parameters, we then have a h-independent potential. 
(iii) In Table 4.1, we have given conditions (like A > 0, B > 0) for the superpotential ( 134)) so 

that $$I’ = Nexp(- JX W(y)dy) is an acceptable ground state energy eigenfunction. Instead 
one can also write down conditions for I/?,$‘) = N exp( J ’ W( y ) dy ) to be an acceptable ground 
state energy eigenfunction. 

(iv) It may be noted that the Coulomb as well as the harmonic oscillator potentials in n-dimensions 
are also shape invariant potentials. 

(v) Does this classification exhaust all shape invariant potentials? It was believed that the answer 
to the question is yes [ 851341 but as we shall see in the next subsection, the answer to the 
question is in fact negative. However, it appears that this classification has perhaps exhausted 
all SIPS where a2 and al are related by translation. 

(vi) No new solutions (apart from those in Table 4.1) have been obtained so far in the case of 
multi-step shape invariance and when a2 and al are related by translation. 

(vii) What we have shown here is that shape invariance is a sufficient condition for exact solvability. 
But is it also a necessary condition? This question has been discussed in detail in Ref. [52] 
where it has been shown that the solvable Natanzon potentials [ 56,571 are in general not shape 
invariant. 

Before ending this subsection, we would like to remark that for the SIPS (with translation) given 
in Table 4.1, the reflection and transmission amplitudes R, (k) and 7’i (k) (or phase shift 61 (k) for 
the three-dimensional case) can also be calculated by operator methods. Let us first notice that since 
for all the cases u2 = al + cy, hence R, (k; al) and T, (k; al) are determined for all values of al from 
Eqs. ( 104) and (105) provided they are known in a finite strip. For example, let us consider the 

shape invariant superpotential 

W = n tanhx, 

where FZ is positive integer (1,2,3,. . .). The two partner potentials 

Vi (x; n) = n2 - n(n + l)sech2x, 

V,(x;n) = n2 - n(n - l)sech2x, 

are clearly shape invariant with 

(150) 

(151) 

a1 = n, u2=n- 1. (152) 
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On going from VI to V, to V, etc., we will finally reach the free particle potential which is reflectionless 
and for which T = 1. Thus we immediately conclude that the series of potentials V, V,, . . . are all 
reflectionless and the transmission coefficient of the reflectionless potential V, (x; n) is given by 

T,(k n> = (n - ik) (n - 1 - ik) * * * ( 1 - ik) 

(-n-ik)(-n+l -ik)...(-1 -ik) 

r(-n - ik)r(n+ 1 - ik) 
= 

r( -ik)T( 1 - ik) ’ 
(153) 

The scattering amplitudes of the Coulomb [47] and the potential corresponding to W = A tanhx + 
B sech x [ 481 have also been obtained in this way. 

There is, however, a straightforward method [48] for calculating the scattering amplitudes by 
making use of the n’th state wave functions as given in Table 4.1. In order to impose boundary 
conditions appropriate to the scattering problem, two modifications of the bound state wave functions 
have to be made: (i) instead of the parameter y1 labelling the number of nodes, one must use the 
wave number k’ so that the asymptotic behaviour is exp(ik’x) as x --+ 00. (ii) the second solution 
of the Schrodinger equation must be kept (it had been discarded for bound state problems since it 
diverged asymptotically). In this way the scattering amplitude of all the SIPS of Table 4.1 have been 
calculated in Ref. [48]. 

4.3.2. Solutions involving scaling 
For almost nine years, it was believed that the only shape invariant potentials are those given 

in Table 4.1 and that there were no more shape invariant potentials. However, very recently we 
have been able to discover a huge class of new shape invariant potentials [ 58,591. It turns out that 
for many of these new shape invariant potentials, the parameters a2 and al are related by scaling 
( a2 = qal, 0 < q < 1) rather than by translation, a choice motivated by the recent interest in q- 

deformed Lie algebras. We shall see that many of these potentials are reflectionless and have an 
infinite number of bound states. So far none of these potentials have been obtained in a closed form 
but are obtained only in a series form. 

Let us consider an expansion of the super-potential of the from 

W(x; a,) = ggj(x)a{ 
j=O 

(154) 

and further let 

a2 = 94, O<q<l. (155) 

This is slightly misleading in that a reparameterization of the form a2 = qal, can be recast as ai = 
ai + cy merely by taking logarithms. However, since the choice of parameter is usually an integral 
part of constructing a SIP, it is in practice part of the ansatz. For example, we will construct below 
potentials by expanding in al, a procedure whose legitimacy and outcome are clearly dependent on 
our choice of parameter and hence reparameterization. We shall see that, even though the construction 
is non-invariant, the resulting potentials will still be invariant under redefinition of al. On using Eqs. 
(154) and (155) in the shape invariance condition (96), writting R(ai) in the form 
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and equating powers of al yields [59,58] 

2&(x) = R,; g\(x) + 24go(x)g1(xI = r14, 

n-l 

g:(X) + 2&gO(x)gn(x) = Ynd~ - drtCgi(x)gn-j(x)9 

j=I 

where 

(156) 

(157) 

(158) 

r, z &/(I -qn), d,=(l-g”)/(l+q”), n=1,2,3 ,... (159) 

This set of linear differential equations is easily solvable in succession to give a general solution of 
Eq. (96). Let us first consider the special case gO( x) = 0, which corresponds to Ra = 0. The general 
solution of Eq. (158) then turns out to be 

g,(x) = 4 
n-l 

Y, - Cgj(x)gn-i(X) 7 IZ = 172, a a. 

j=l 
I 

(160) 

where without loss of generality we have assumed the constants of integration to be zero. We thus see 
that once a set of Y, are chosen, then the shape invariance condition essentially fixes the g,(x) (and 
hence W( x; al ) ) and determines the shape invariant potential. Implicit constraints on this choice are 
that the resulting ground state wave function be normalizable and the spectrum be sensibly ordered 
which is ensured if R(q”a,) > 0. 

The simplest case is r-1 > 0 and r, = 0, n > 2. In this case the Eq. (160) takes a particularly 
simple form 

g, (xl = PnX2n-1 7 (161) 

where 

PI = d,rl, /3n = - 

and hence 

W(x;a,) = Ffija{x”-’ = &F(&x). 
j=I 

For a2 = qal, this gives 

(162) 

(163) 

W(x;a2) = &W<g$, a), t 164) 

which corresponds to the self-similar W of Shabat and Spiridonov [ 60,611. It is worth pointing out 
that these self-similar potentials can be shown to satisfy q-supersymmetry [62]. It may be noted 
here that instead of choosing Y, = 0, n >_ 2, if any one r, (say rj) is taken to be nonzero then 
one again obtains self-similar potentials [59,58] and in these instances the results obtained from 
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shape invariance and self-similarity are entirely equivalent and the Shabat-Spiridonov self-similarity 
condition turns out to be a special case of the shape invariance condition. 

It must be emphasized here that shape invariance is a much more general concept than self- 
similarity. For example, if we choose more than one Y, to be nonzero, then SIP are obtained which 
are not contained within the self-similar ansatz. Consider for example, r, = 0, y1 > 3. Using Eq. ( 160) 
one can readily calculate all the g,(x), of which the first three are 

!?I (x) = 4r1-G g2(x) = d2r,x - ;d$-;x3, 

g3(x) = -;d,r,d2r2d3x3 + $d;r;d2d3x5. (165) 

Notice that in this case W(x) contains only odd powers of x. This makes the potentials &,2(x) 
symmetric in x and also guarantees unbroken SUSY. The energy eigenvalues follow immediately 
from Eqs. (101) and (156) and are given by (0 < 9 < 1) 

E(‘)(ul) =r, (1 -t4)(1-4”) +r (1+9%1 -s2”> 
n (l-4) 

2 
(l-s2) ’ 

n=0,1,2,... 

where rl = dl rlal , f2 = d2r2ui while the unnormalized ground state wave function is 

(166) 

#‘(x; Ul> = exp -~(I.~+~2)+~(dzT:+2d~~~~2+4r:)+0(x6) . 1 (167) 

The wave functions for the excited states can be recursively calculated from the relation ( 103). 
We can also calculate the transmission coefficient of this symmetric potential (k = k’) by using 

the relation ( 125) and the fact that for this SIP a2 = qal . Repeated application of the relation ( 125) 
gives 

where 

W(m, Uj) = 4s. (169) 

Now, as n --) co, u,,+~ = qnul --+ O(0 < q < 1) and, since we have taken go(x) = 0, one gets 
W(x; u,,+~) --f 0. This corresponds to a free particle for which the reflection coefficient RI (k; al) 
vanishes and the transmission coefficient is given by 

O” [ik- W(m,uj)] 
7’,(k;al) =n 

j=l [ik+W(myuj)]’ 
(170) 

The above discussion keeping only F-~, r2 j 0 can be readily generalized to an arbitrary number of 
nonzero rj. The energy eigenvalues for this case are given by (rj z djrj&i) 

Ei’)(U*) = C rj 

(1+4>(1- $7 
(I--@) ’ 

n=0,1,2,... 
j 

(171) 
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All these potentials are also symmetric and reflectionless with Tr as given by Eq. ( 170). The limits 
q ----t 0 and q -+ 1 of all these potentials are simple and quite interesting. At q = 1, the solution 
of the shape invariance condition (96) is the standard one dimensional harmonic oscillator with 
W(x) = Rx/2 while in the limit q -+ 0 the solution is the Rosen-Morse superpotential corresponding 
to the one soliton solution given by 

W(x) = fitanh(fix). (172) 

Hence the general solution as obtained above with 0 < q < 1 can be regarded as the multi-parameter 
deformation of the hyperbolic tangent function with q acting as the deformation parameter. It is also 
worth noting that the number of bound states increase discontinuously from just one at q = 0 to 
infinity for q > 0. Further, whereas for q = 1 the spectrum is purely discrete, for q even slightly less 
than one, we have the discrete as well as the continuous spectra. 

Finally, let us consider the solution to the shape invariance condition (96) in the case when R,, $0. 

From Eq. ( 157) it then follows that go(x) = Rex/2 rather than being zero. One can again solve the 
set of linear differential equations ( 157) and ( 158) in succession yielding g1 (x) , g2( x) , . . . Further, 
the spectrum can be immediately obtained by using Eqs. (101) and (156). For example, in the case 
of an arbitrary number of nonzero Rj (in addition to Ro), it is given by 

(173) 

which is the spectrum of a q-deformed harmonic oscillator [ 136,137]. It is worth pointing out here 
that, unlike the usual q-oscillator where the space is noncommutative but the potential is normal 
(w2x2), in our approach the space is commutative, but the potential is deformed, giving rise to a 
multi-parameter deformed oscillator spectrum. 

An unfortunate feature of the new SIPS obtained above is that they are not explicitly known in terms 
of elementary functions but only as a Taylor series about x = 0. Questions about series convergence 
naturally arise. Numerical solutions pose no serious problems. As a consistency check, Barclay et al. 
have checked numerically that the Schrodinger equation solved with numerically obtained potentials 
indeed has the analytical energy eigenvalues given above. From numerical calculations one finds that 
the superpotential and the potential are as shown in Figs. 4.1 and 4.2 [ 591 corresponding to the case 
when rl $0, r, = 0, n > 2. These authors, however, see no evidence of the oscillations in W and V as 
reported by Degasperis and Shabat [ 631. A very unusual new shape invariant potential has also been 
obtained [59] corresponding to r1 = 1, r2 = -1, r, = 0, n > 3 (with q = 0.3 and a = 0.75) which is 
shown in Fig. 4.3. In this case, whereas Vi (x) is a double well potential, its shape invariant partner 
potential V2( x) is a single well. 

It is worth pointing out that even though the potentials are not known in a closed form in terms 
of elementary functions, the fact that these are reflectionless symmetric potentials can be used to 
constrain them quite strongly. This is because, if we regard them as a solution of the KdV equation 
at time t = 0, then being reflectionless, it is well known that such solutions as t --f &co will break up 
into an infinite number of solitons of the form 2k?sech*kix [ 138,139]. On using the fact that the KdV 
solitons obey an infinite number of conservation laws corresponding to mass, momentum, energy . . . . 
one can immediately obtain constraints on the reflectionless SIPS obtained above [ 591. 
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Fig. 4.1. Self-similar superpotentials W(n) for various values of the deformation parameter q. The curve labeled H.O. 
(harmonic oscillator) corresponds to the limiting case of q = 1. Note that only the range x 2 0 is plotted since the 

superpotentials are antisymmetric W(x) = - W( -x). 

Fig. 4.2. Self-similar potentials Vt (x) (symmetric about x = 0) corresponding to the superpotentials shown in Fig. 4.1. The 
curves are taken from Ref. [ 591. 
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Fig. 4.3. A double well potential V,(x) (solid line) and its single well supersymmetric partner h(x) (dotted line). Note 
that these two potentials are shape invariant [59] with a scaling change of parameters. The energy levels of VI (x) are 
clearly marked. 

4.3.3. Solutions of multi-step shape invariance 
Having obtained potentials which are multi-parameter deformations of the Rosen-Morse potential 

corresponding to the one soliton solution, an obvious question to ask is if one can also obtain 
deformations of the multi-soliton solutions. The answer is yes [59] and as an illustration we now 
explicitly obtain the multi-parameter deformations of the two soliton case by using the formalism of 
two-step shape invariance as developed earlier in this section. 

Let us take the scaling ansatz a2 = qal and expand the two superpotentials W and @ in powers of 

al 
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W(X;Ul) = &j(X)U{; W(X;Ul) = Fhj(X)Uj 

j=O j=O 
(174) 

Further, we write R and R in the form 

R(u,) =gRjd; .R(u~) =gRjd 
.i=o j=O 

Using these in Eqs. (107) and (109) and equating powers of al yields (n=0,1,2,. . .) 

(175) 

gk + f: gjg,-j = 2 hjh,-j - hi + R,, 
j=O j=O 

hk + 2 hjh,_j = q” 2 gjgn-j - q”& + i?,a 
j=O j=O 

(176) 

(177) 

This set of linear equations is easily solved in succession. For example when R. = & = 0 (and hence 
go(x) = ho(x) = 0) and further R, = I?, = 0, n 2 3 one can readily calculate all the g,(x) and h,(x) . 
The first two of each are 

gl= (RI-&) 
(1-q) x9 

CR2 - &) 
g2= (1_q2) x 

x3 
+ 3(1 - q)3 

I(1 - q)(& - R:) -2(l +q)R#d, 

h,=(hGG) . 
(1 -s> x7 
R2x 

h*= (1 -q2) 

X3 
- 

3(1 +q)(l -q)* 
[(l+q)&+(l+q)(l-q2)R;-2q(l-q)Rlk,]. 

The energy eigenvalues which follow from Eqs. ( 117) and ( 118) are [ 591 

(178) 

(179) 

(180) 

For the special case of R2 = R2 = 0 the spectrum was obtained previously by Spiridonov from the 
considerations of the two-step self-similar potentials [ 1351. 
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The limit q + 0 of the above equation is particularly simple and yields the Rosen-Morse potential 
corresponding to the two soliton case i.e. 

(181) 

provided R = 31?. This procedure can be immediately generalized and one can consider shape 
invariance with a scaling ansatz in 3,4, . . . , p steps and thereby obtain multi-parameter deformations 
of the 3,4,. . . , p soliton Rosen-Morse potential. 

4.3.4. Other solutions 
So far we have obtained solutions where a2 and al are related either by scaling or by translation. 

Are there shape invariant potential where a2 and al are neither related by scaling nor by translation? 
It turns out that there are other possibilities for obtaining new shape invariant potentials. Some of the 
other possibilities are: a2 = qay with p = 2,3, . . . and a2 = qaI /( 1 + pal). Let us first consider the 

case when 

a2 = qa: (182) 

i.e p = 2. Generalization to arbitrary p is straightforward [ 591. On using Eqs. ( 155) and ( 156) one 

obtains the set of equations 

2nt 

&,(x> + Cgj(x)g2m-j(X) = 4” ~~j(x)grr-j(~) - fl&(~) + R2m7 

j4 j=O 

2m+ 1 

(183) 

&p,+,(x) + C gj(x)g2m+l-j(X) = R2m+l9 (184) 
.i=o 

which can be solved in succession and one can readily calculate all the g,(x) . For example, when 
only RI and R2 are nonzero, the first three g’s are 

gl (x) = Rlx, g2(x) = (R2 - qR,)x - ;R;x3, 

g3(x) = :R1 (qR1 - R2)x3 + &R;x5. (185) 

The corresponding spectrum turns out to be ( E$‘)(al) = 0) 

11=1,2,... (186) 

The q -+ 0 limit of these equations again correspond to the Rosen-Morse potential corresponding to 
the one soliton solution. One can also consider shape invariance in multi-steps along with this ansatz 
thereby obtaining deformations of the multi-soliton Rosen-Morse potential. 

One can similarly consider solutions to the shape invariance condition (96) in case 

9ar al = ___ 
1 +pal 

(187) 

when 0 < q < 1 and pal < 1 so that one can expand ( 1 + pal) -’ in powers of al. For example, 
when only R1 and R2 are nonzero, then one can show that the first two nonzero g, are 
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gz(x) = 
P@I 

Rz+--- > x- 
(1 -s> x3 

(1 +41 (1 +@(1 +q2) 3 

and the energy eigenvalue spectrum is (Eh” = 0) 

(188) 

(189) 

Generalization to the case when several Rj are nonzero as well as shape invariance in multi-steps 
is straightforward. 

We would like to close this subsection with several comments. 

(9 

(ii) 

(iii) 

(iv) 

Just as we have obtained q-deformations of the reflectionless Rosen-Morse and harmonic oscil- 
lator potentials, can one also obtain deformations of the other SIPS given in Table 4.1? 
Have we exhausted the list of SIP? We now have a significantly expanded list but it is clear 
that the possibilities are far from exhausted. In fact it appears that there are an unusually 
large number of shape invariant potentials, for all of which the whole spectrum can be obtained 
algebraically. How does one classify all these potentials? Do these potentials include all solvable 
potentials [ 52,53]? 
For those SIP where a2 and al are not related by translation, the spectrum has so far only been 
obtained algebrically. Can one solve the Schrodinger equation for these potentials directly? 
There is a fundamental difference between those shape invariant potentials for which a2 and 
al are related by translation and other choices (like a2 = qal). In particular, whereas in the 
former case the potentials are explicitly known in a closed form in terms of simple functions, 
in the other cases they are only known formally as a Taylor series. Secondly, whereas in the 
latter case, all the SIP obtained so far have infinite number of bound states and are either 
reflectionless (or have no scattering), in the former case one has also many SIP with nonzero 
reflection coefficients. 

4.4. Shape invariance and noncentral solvable potentials 

We have seen that using the ideas of SUSY and shape invariance, a number of potential problems 
can be solved algebraically. Most of these potentials are either one dimensional or are central potentials 
which are again essentially one dimensional but on the half line. It may be worthwhile to enquire 
if one can also algebraically solve some noncentral but separable potential problems. As has been 
shown recently [ 1311, the answer to the question is yes. It turns out that the problem is algebraically 
solvable so long as the separated problems for each of the coordinates belong to the class of SIP. As 
an illustration, let us discuss noncentral separable potentials in spherical polar coordinates. 

In spherical polar coordinates the most general potential for which the Schrodinger equation is 
separable is given by [ 1401 

v(e) V(4) 
V(r, 89 4) = V(r) + --$- + r2 (190) 



K Cooper et al. /Physics Reports 251 (1995) 267-385 307 

where V(r),V(8) and V(4) are arbitrary functions of their argument. First, let us see why the 
Schrijdinger equation with a potential of the form given by Eq. (190) is separable in the (r, 13,4) 
coordinates. The equation for the wave function $(r, B,4) is 

It is convenient to write +( Y, 8, 4) as 

(191) 

(192) 

Substituting Eq. ( 192) in Eq. ( 191) and using the standard separation of variables procedure, one 
obtains the following equations for the functions K(4), H(B) and R(r): 

-g + V(4)K(4J) = m2w$> 9 

-g + [V(e) + (m2 - f) cosec28]H(8) = PH(O), 

-2 + V(r) + 
[ 

(12 - ‘) 
r2 4 

1 
R(r) = H?(r), 

(193) 

(194) 

(195) 

where nz2 and l2 are separation constants. 
As has been shown in Ref. [ 1311, the three Schrijdinger equations given by ( 193), ( 194) and 

( 195) may be solved algebraically by choosing appropriate SIPS for V( C/J), V(6) and V(r) . Details 
can be found in Ref. [ 13 11. 

Generalization of this technique to noncentral but separable potentials in other orthogonal curvilin- 
ear coordinate systems as well as in other dimensions is quite straightforward. Further, as we show 
below, one could use this trick to discover a number of new exactly solvable three-body potentials in 
one dimension. 

4.5. Shape invariance and 3-body solvable potentials 

Many years ago, in a classic paper, Calogero [ 1411 gave the complete solution of the Schrijdinger 
equation for three particles in one dimension, interacting via two-body harmonic and inverse-square 
potentials. Later, Wolfes [ 1421 used Calogero’s method to obtain analytical solutions of the same 
problem in the presence of an added three-body potential of a special form. Attention then shifted to 
the exact solutions of the many-body problem and the general question of integrability [ 143-1451. 
Recently, there has been renewed interest in the one-dimensional many-body problem in connection 
with the physics of spin chains [ 146-1491. Also, there has been a recent generalization of Calogero’s 
potential for N-particles to SUSY QM [ 1501. 

The purpose of this subsection is to show that using the results for SIPS derived above, one can 
discover a number of new 3-body potentials for which the 3-body problem in one dimension can be 
solved exactly [ 1321. There is a rule of thumb that if one can solve a 3-body problem then one can 
also solve the corresponding n-body problem. Thus hopefully one can also solve the corresponding 
statistical mechanics problem. 
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The important point to note is that three particles in one dimension, after the center of mass 
motion is eliminated, have two degrees of freedom. This may therefore be mapped on to a one-body 
problem in two dimensions. Calogero [ 1411 considered the case where the two dimensional potential 
is noncentral but separable in polar coordinates r, 4. From the above discussion, it is clear that if 
the potentials in each of the coordinates r and 4 are chosen to be shape invariant, then the whole 
problem can be solved exactly. 

Calogero’s [ 1411 solution of the three-body problem is for the potential 

Vc =w~/SC(X~-X~)~+~C(X~-X~)-~, (196) 
i<j i<j 

where g > -l/2 to avoid a collapse of the system. Wolfes [ 1421 showed that a three-body potential 

v,=f[(X1+X2-2X3)-2+(X~+Xg-2X1)-2+(X3+X,-2X2)-21 (197) 

is also solvable when it is added to V,, with or without the pairwise centrifugal term. The last 
two terms on the right-hand side of Eq. (197) are just cyclic permutations of the first. Henceforth, 
such terms occurring in any potential are referred to as “cyclic terms”. In this subsection, we give 
more examples of three-body potentials that can be solved exactly. Our first solvable example is the 
three-body potential of the form 

V, = af1 (” + x2 - 2x3) + cyclic terms 

2r2 1 (x1 - x2) 1 9 (198) 

which is added to the Calogero potential Vc of Eq. ( 196). In the above equation, 

y2 = ir (Xi - x212 + (x2 - x3j2 + (x3 - xd21. (199) 

TO see why potentials given by Eqs. (196) to (198) are solvable, define the Jacobi coordinates 

R=;(xI+x~+x~), (200) 

x = (xl - ~21, 

Jz 

y = (x1 +X2 - 2x3) 

& * 
(201) 

After elimination of the center of mass part from the Hamiltonian, only the x- and y-degrees of 
freedom remain, which may be mapped into polar coordinates 

x = rsin4, y = rcos+. (202) 

Obviously, the variables r, 4 have ranges 0 _< r 5 00 and 0 5 4 5 27r. It is straightforward to show 
that 

(xi -x2) = JZrsin4, 

(x2 - x3) = &r sin($ + 2~/3), 

(x3 - x1) = JZrsin(4 + 47r/3). (203) 

It turns out that Vc, VW as well as & are all noncentral but separable potentials in the polar coordinates 
r,$. As a result, the Schrodinger equation separates cleanly in the radial and angular variables, and 
the wave function can be written as 
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In all three cases, the radial wave function obeys the equation 

d* 3 
-G + ,w’r’+ 

(B: - $) 
r* &I = G&l(r) 9 

(204) 

(205) 

where Bf- is the eigenvalue of the Schrijdinger equation in the angular variable. Eq. (205) corresponds 
to a SIP and the eigenvalues E,,, and the eigenmnctions R,,, which follow from Table 4.1 are 

En, = Jl 3 20(2n+B1+1), n,Z=0,1,2 ,... (206) 

R,, =r”exp[-~(J3/2)wr*]L~[$(@)wr*], (207) 

where BI > 0. To examine the angular part of the eigenfunction Fl( 4), take the potential V, + V,. 

Then, in the variable 4, the Schriidinger equation is 

1 --$+g [ cosec* 
??I=1 

@+2(m- 1): 1 
+&cot [4+2(m- 1); 

!?I=1 

On using the identities 

3 

C cosec2 [ q5 + 2(m - 1)7r/3] = 9 cosec*34, 
m=l 

-&ot[&+2(m- 1)7r/3] =3cot3+J 
tll=l 

Eq. (208) reduces to 

--$ + $cosec*3+ + !fl cot 34 F1 = Bffi(4,). 

Now this is again a SIP and hence its eigenvalues and eigenfunctions are 

B: = 9(Z + a + 1/2>2 - ;f;/(Z + a + 1/2)2, 

(208) 

(209) 

(210) 

(211) 

(212) 

(213) 

where P,‘f,p is the Jacobi polynomial and 

a = l/2( 1 + 2g)‘/*. (214) 

It must be noted that g > -l/2 for meaningful solutions. As expected, we recover the results for the 
Calogero potential Vc in the limit fl = 0. 
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For distinguishable particles, a given value of 4 defines a specific ordering. For 0 5 4 5 7r/3, Eq. 
(203) implies X1 2 X2 2 X 3, and other ranges of 4 correspond to different orderings [ 141,142]. 
For singular repulsive potentials, crossing is not allowed, and Fl( 4) of Eq. (213) is zero outside 
0 < 4 5 r/3. Following Calogero, the wave function for the other ranges may be constructed. 
Similarly, for indistiguishable particles, symmetrized or antisymmetrized wave functions may be 
constructed. 

Proceeding in the same way and using the results of Table 4.1, it is easily shown that the other 

exactly solvable potentials are [ 1321 

~=~W2C(X~-Xj)2+3gt(X*+X2-2X3)-2+cyclicterms] 
i<j 

3&f, --_ 

i 

(Xl - x2> 

2 r2 (x, +X2-2x3) 
+ cyclic terms 1 , 

V3 = $0’ C(Xi - Xj)2 + gC(Xi - Xj)-2 

i<j i<j 

f3 (Xl +-x2 - 2x3) -- 

&r [ (x1 - x2)2 

+ cyclic terms 
1 

, 

V, = io2 C(Xi - Xj)2 + 3g[,(Xl 

J 

+ x:! - x3) -2 + cyclic terms] 
i<j 

(XI - x2) 

(X, + X2 - 2x3)2 

(215) 

(216) 

+ cyclic terms 1 . (217) 

Notice that in all these cases one has combined the SIP in the angular variable with the harmonic 
confinement. The three body scattering problem has also been studied in these cases after droping the 
harmonic term [ 1321. The possibility of replacing the harmonic confinement term with the attractive 
i-type interaction has also been considered. Note that in this case one has both discrete and continuous 
spectra. Further, in this case one can obtain exact solutions of three-body problems for all the SIPS 
discussed above (i.e. V, , . . . I& Vc, VW, Vc + VW) along with the attractive l/r potential [ 1321. 

5. Operator transforms - new solvable potentials from old 

In 1971, Natanzon [ 561 wrote down (what he thought at that time to be) the most general solvable 
potentials i.e. for which the Schriidinger equation can be reduced to either the hypergeometric or 

confluent hypergeometric equation . It turns out that most of these potentials are not shape invariant. 
Further, for most of them, the energy eigenvalues and eigenmnctions are known implicitly rather than 
explicitly as in the shape invariant case. One might ask if one can obtain these solutions from the 
explicitly solvable shape invariant ones. One strategy for doing this is to start with a Schrijdinger 
equation which is exactly solvable (for example one having a SIP) and to see what happens to this 
equation under a point canonical coordinate transformation. In order for the Schriidinger equation 
to be mapped into another Schriidinger equation, there are severe restrictions on the nature of the 
coordinate transformation, Coordinate transformations which satisfy these restrictions give rise to 
new solvable problems. When the relationship between coordinates is implicit, then the new solutions 
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are only implicitly determined, while if the relationship is explicit then the newly found solvable 
potentials are also shape invariant [ 127-1291. In a more specific special application of these ideas, 
Kostelecky et al. [ 1301 were able to relate, using an explicit coordinate transformation, the Coulomb 
problem in d dimensions with the d-dimensional harmonic oscillator. Other explicit applications of 
the coordinate transformation idea are found in the review article of Haymaker and Rau [ 1201. 

Let us see how this works. We start from the one-dimensional Schriidinger equation 

i 
-2 + [V(x) - En1 I &(x) =o. 

Consider the coordinate transformation from x to z defined by 

f(z) = 2, 
so that 

$=f-$ 

(218) 

(219) 

(220) 

The first step in obtaining a new Schrodinger equation is to change coordin ates and divide by f2 so 
that we have: 

d2 f’ d --___ 
dz2 fdz+ 

To eliminate the first derivative term, one next rescales the wave function: 

Adding a term E,,$ to both sides of the equation yields 

where 

%%) 
V - E, f’2 f" 

=f2- 4f2-2f * 
[ 1 

In order for this to be a legitimate Schrodinger equation, the 
independent of IZ. This can be achieved if the quantity G defined by 

G = V - E,, + l ,f2 

(221) 

(222) 

(223) 

(224) 

potential P(E,) + E, must be 

(225) 

is independent of n. How can one satisfy this condition? One way is to have f2 and G to have the 
same functional dependence on x(z) as the original potential V. This further requires that in order 
for P to be independent of n, the parameters of V must change with n so that the wave function 
corresponding to the n’th energy level of the new Hamiltonian is related to a wave function of the 
old Hamiltonian with parameters which depend on ~1. This can be made clear by a simple example. 
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Let us consider an exactly solvable problem - the three dimensional harmonic oscillator in a given 
angular momentum state with angular momentum p. The reduced ground state wave function for that 
angular momentum is 

tlrg(r) = yP+te-&2 1 (226) 

so that the super-potential is given by 

W(r) = ff?- - (p + 1)/r, 

and HI is given by: 

(227) 

d2 PW+ 1) 
HI=-%+ 

T-2 
+ a2r2 - 2a(/3 + 3/2). 

By our previous argument we must choose f = g to be of the form: 

(229) 

The solution of this equation gives z = z (r) which in general is not invertible so that one knows 

r- = r(z) only implicitly as discussed before. However for special cases one has an invertible function. 
Let us for simplicity now choose 

f = r, z = r2/2. (230) 

As discussed earlier, the energy eigenvalues of the three dimensional harmonic oscillator are give by 

E, = 4an, (231) 

so that the condition we want to satify is 

V-4an+e,f2=G=s+Er2+R (232) 

Equating coefficients we obtain 

D=P(P+ l), E = E, + a2 = y, 

F = -4an - 2a(P + 3/2) = -2Ze2. (233) 

We see that for the quantities D, E, F to be independent of n one needs to have that (Y, which 
describes the strength of the oscillator potential, be dependent on n. Explicitly, solving the above 
three equations and choosing fl= 21+ l/2, we obtain the relations: 

Ze2 Z2e4 
cu(z’n)=2(l+n+l)’ E’=Y-4(E+l+n)2’ (234) 

We now choose y = ct? (1, n = 0) so that the ground state energy is zero. These energy levels are 
those of the hydrogen atom. In fact, the new Hamiltonian written in terms of z is now 

(235) 
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and the ground state wave function of the hydrogen atom is obtained from the ground state wave 
function of the harmonic oscillator via 

& = f l/2flo = Xl+le-nho)x~ 
(236) 

Higher wave functions will have values of a which depend on IZ so that the different wave functions 
correspond to harmonic oscillator solutions with different strengths. 

All the exactly solvable shape invariant potentials of Table 4.1 can be inter-related by point 
canonical coordinate transformations [ 128,129]. This is nicely illustrated in Fig. 5.1. In general, r 
cannot be explicitly found in terms of z, and one has 

dz/dr=f= Jm, (237) 
whose solution is: 

z = dA+Cr2+Br4 

2 
+ JAlog(r’) 

2 

_ fi log( 2 A + C r2 + 2&JA + Cr2 + Br4) 

2 

+ C log( C + 2Br2 + 2fi JA + Cr2 + Br4) 

40 
(238) 

This clearly is not invertible in general. If we choose this general coordinate transformation, then 
the potential that one obtains is the particular class of Natanzon potentials whose wave functions are 
confluent hypergeometric functions in the variable r and are thus only implicitly known in terms of 
the true coordinate z. In fact, even the expression for the transformed potential is only known in 
terms of r: 

ii( z, D, E) = 1 /f2 [ D/r2 + Er2 + F - f/‘/4 + ff”/2] (239) 

and thus only implicitly in terms of z. Equating coefficients, we get an implicit expression for the 
eigenvalues: 

CE,-F - Jw=2n+1 
2d_ 

(240) 

as well as the state dependence on cx and p necessary for the new Hamiltonian to be energy 
independent: 

cy, = &7=-Z&, p,=-1/2+JW. (241) 

5.1. Natanzon potentials 

The more general class of Natanzon potentials whose wave functions are hypergeometric functions 
can be obtained by making an operator transformation of the generalized Poschl-Teller potential 
whose Hamiltonian is: 

(242) 
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P&hi-Teller-II 

t 
xc5 

2 

Generalized Pikchl-Teller 

Piischl-Teller-I 

Scarf 
:onometric) 

(Trigonometric) 

Rosen-Morse-II 

Fig. 5.1. Diagram showing how all the shape invariant potentials of Table 4.1 are inter-related by point canonical coordinate 
transformations. Potentials on the outer hexagon have eigenfunctions which are hypergeometric functions whereas those on 

the inner triangle have eigenfunctions which are confluent hypergeometric functions. These two types are related by suitable 

limiting procedures. The diagram is from Ref. [ 1291. 

This corresponds to a superpotential 

W=atanhr-pcothr 

and a ground state wave function given by: 

& = sinhP Y coshPa r. 

(243) 

(244) 

The energy eigenvalues were discussed earlier and are 
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E, = (a - p)* - (a - ,B - 2n)*. (245) 

The most general transformation of coordinates from r to z which preserves the Schrijdinger 
equation is described by: 

fLB_ 

sinh* Y 

From this we obtain an explicit expression for z in terms of r. 

z = L&ul-l 

{ J 
-3A+B-C+(A+B-C)cosh2r 

24 -2A + 2B - C + 2( A + B) cash 2r + Ccosh* 2r 

- filog{-A + 3B - C + (A + B + C) cosh2r 

(246) 

+ 2&+2A + 2B - C + 2( A + B) cash 2r + Ccosh’ 2r) 

+&log{A+B+Ccosh2r 

+ fi -2A + 2B - C + 2( A + B) cash 2r + Ccosh* 2r) 

+ fi log{2sinh*r} 

However the expression for the transformed potential is only known in terms of Y: 

(247) 

&a- 1) Y(Y-t 1) ff2 f" - 
sinh* r cash* r +D-4f2+2f I (248) 

and thus only implicitly in terms of z. Equating coefficients, we get an implicit expression for the 
eigenvalues: 

[(y + l/2)* - A#* - [ (6 - l/2)* - BE,]“~ - ((7 - CE,)“* = 2n + 1 

as well as the state dependence on CY and /3 necessary for the new Hamiltonian 

independent: 

a,=[(y+1/2)*-A&*- l/2, Bn = [ (6 - l/2)* - BE,]~‘* + l/2. 

5.2. Generalizations of Ginocchio and Natanzon potentials 

(249) 

to be energy 

(250) 

In Ref. 1521 it was explicitly shown that the Ginocchio and Natanzon potentials, whose wave 
functions are hypergeometric functions of an implicitly determined variable are not shape invariant 
and thus one could construct new exactly solvable potentials from these using the factorization 
method. It is convenient to use the original approach [57,56] to define the Ginocchio and Natanzon 
potentials and then obtain their generalization to more complicated solvable potentials whose wave 
functions are sums of hypergeometric functions. These generalized potentials have coordinates which 
are only implicitly known. The operator which allows one to construct the eigenfunctions of H2 
from those of HI converts single hypergeometric functions of the implicitly known coordinate to 
sums of hypergeometric functions. This process yields totally new solvable potentials. The resulting 
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potentials are ratios of polynomials in the transformed coordinate in which the wave functions are 
sums of hypergeometric functions. The transformed coordinate is only implicitly known in terms of 
the coordinate system for the Schrodinger equation. 

The original method of obtaining the Natanzon potentials was to find a coordinate transformation 
that mapped the Schrijdinger equation onto the equation for the hypergeometric functions. 

If we denote by Y the coordinate appearing in the Schrodinger equation: 

[--$ ivrrj] lb(r> =o (251) 

where --oo 5 Y < CC and z the coordinate describing the hypergeometric function F(a, /3; y; Z) 
appearing in the differential equation: 

where 0 5 z 2 1, then the transformation of coordinates is given by [ 561 

dz 22(1 -z) 

dr= R’/2 ’ 
R=az2+(c,-c~-a)z+co 

(252) 

(253) 

In terms of the coordinate z the most general potential V( Y j which corresponds to a Schrodinger 
equation getting mapped into a hypergeometric function equation is given by: 

V(r) = [fz(z - 1) + ho(1 -z) + h,z + 11/R 

a+ uf(c1 -co>(2z - 1) 

z(z - 1) 

where 

(254) 

We note that z is only implicitly known in terms of r. The potential V(r) is a function of six 
dimensionless parameters f, ho, hi, a, CO and cl. These six parameters will be related to the energy E, 
and the parameters (a, p, 7) of the hypergeometric function below. 

The class of potentials called the Ginocchio potentials is a subclass of the Natanzon class which 
has only two independent variables nu and A where co = 0, cl = l/h4, a = cl - 1/A2, ho = -3/4, 
hi = -1, and f= (v + 1/2)2 - 1. 

The Ginocchio potentials are more easily discussed, however by considering them as derived from 
coordinate transformations which map the Schrodinger equation into the differential equation for the 
Gegenbauer polynomials. 

The transformation is given by 

$=(l-y2j[l+(A2-ljy2] 

where now -1 5 y 2 1 and the potential is given by: 

V(r) = {-A*v(v + 1) + $( 1 - A2) [5( 1 - A2)y4 - (7 - A2)y2 + 2]}( 1 - y2). 

Although y is not known explictly in terms of r, it is implicitly known via: 

(255) 

(256) 
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rA2 = tanh-‘(y) - (1 - A2)‘/2tanhh1[(1 - A2)1/2y], A < 1, 

rA2 = tanh-‘(y) + (A2 - 1)1’2tan-‘[(A2 - 1)“2y], A > 1. 

By introducing the variables: x = Ay/ [ g( y) ] l/2 where 

g(y) = 1 + (A2 - l)y2, 

(257) 

and changing the variable x to an angle x = cos 8, one obtains from the Schrodinger equation, the 
equation for the Gegenbauer polynomials: 

[ 

p2 - l/4 $+(“+P+lw2- sin2e 1 
where 

z = I1 - y2\1’2 E = +2~4 

A” ” 

z1/2$, = 0 

The corresponding energy eigenvalues and eigenfuctions are 

~U,A~=[A~(~+1/2)~+(l-A~)(,+1/2)~]’/~-(~+1/2), 

(Gin = (1 - Y2)~L./2[8(Y)~-(2~Lll~l)/4~,(~Ln+1/2)(X). 

Thus the superpotential is: 

;(l - A2)y(y2 - 1) +poyA’. 

For the Natanzon potential (254) we have that the energy eigenvalues are given by: 

and the corresponding (unnormalized) energy eigenfunctions are given by: 

JI, = R1/4zpn’2(1 -z)““~ F(-n,a, - n; l+&;z_). 
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(258) 

(259) 

(260) 

(261) 

(262) 

(263) 

(264) 

It is easy to determine the superpotential from the ground state wave function: 

W(r) = [Soz - (1 +P,,>(l - z)I/R”~ 

+ [(cl - co - a)z + 2col(l - z>/(~R~‘~). (265) 

Once we have the superpotential and the explicit expression for the wave functions we can determine 
all the wave functions of the partner potential using the operator: 

Al =$+W(r) =g$+w(z) = 
2z(l-2) d 

RI/2 z + W(z) 

for the case of the Natanzon potential and the operator: 
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A, = $ + W(r) 
dy d 

= zdy + W(y) = (1 - y2> [1+ (A2 - l)y21-$ + W(y) 

for the case of the Ginocchio potentials. In general, these operators take a single hypergeometric 
function into a sum of two hypergeometric functions which cannot be reexpressed as a single hy- 
pergeometric function except in degenerate cases where one obtains the shape invariant special cases 
discussed earlier, Explicitly, one has for the unnormalized eigenfunctions of Hz, the partner to the 
original Natanzon Hamiltonian: 

@, =R-“4Zfi~‘2(1-Z)6PZ’2[(1 -z)[~n-/$)-Z(Sn-S())]F(-n,a,-n;l+p,;z) 

-22(1-z)n(n+1+p,+&)F(-n+1,a,-n+1;2+p,;z)1 (266) 

and for the partner potential V2 = w2 + W’ one has 

v,=E~+[(~O+SO)(~O+~~+2)2(2-1)+(~~-1)(1-z)+(S~-1)Z+11/R 

+ [a- [c,(3Po+~o) +co(Po+3~o)a(l -Po-~o)l/Mz - 111 

- (22 - l)i(Cl -co>(Po+~o+1) +4Po-~o>l/[z(z - 1)l 

+7A/(4R)lz2(1 - z2)/R2. (267) 

By using the hierarchy of Hamiltonians one can construct in the usual manner more and more 
complicated potentials which are ratios of higher and higher order polynomials in z (as well as R) 
which are isospectral to the original Natanzon potential except for the usual missing states. The wave 
functions will be sums of hypergeometric functions. The arguments are identical for the Ginocchio 
class with the hypergeometric functions now being restricted to being Gegenbauer polynomials. The 
potentials one obtains can have multiple local minima and several of these are displayed in [ 521. 
In [52] it was also shown that the series of Hamiltonians and SUSY charges form the graded Lie 
algebra SE ( l/l) @ SU( 2). However this algebra did not lead to any new insights. We shall also see 
in Section 13 that the series of Hamiltonians form a parasupersymmetry of order p if the original 
Hamiltonian has p bound states. 

6. Supersymmetric WKB approximation 

The semiclassical WKB method [ 15 1 ] is one of the most useful approximations for computing the 
energy eigenvalues of the Schrijdinger equation. It has a wider range of applicability than standard 
perturbation theory which is restricted to perturbing potentials with small coupling constants. The 
purpose of this section is to describe and give applications of the supersymmetric WKB method 
(henceforth called SWKB) [ 79,801 which has been inspired by supersymmetric quantum mechanics. 

6. I. SWKB quantization condition for unbroken super-symmetry 

As we have seen in previous sections, for quantum mechanical problems, the main implication of 
SUSY is that it relates the energy eigenvalues, eigenfunctions and phase shifts of two supersymmetric 
partner potentials V, (x) and V,(x) . Combining the ideas of SUSY with the lowest order WKB method, 
Comtet, Bandrauk and Campbell 1791 obtained the lowest order SWKB quantization condition in 
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case SUSY is unbroken and showed that it yields energy eigenvalues which are not only exact for 
large quantum numbers IZ (as any WKB approximation scheme should in the semiclassical limit) but 
which are also exact for the ground state (n = 0). We shall now show this in detail. 

In lowest order, the WKB quantization condition for the one dimensional potential V(x) is [ 15 I] 

J’,/2m[E,-V(x)]dx=(n+l/2)fi7r, n=0,1,2,..., 

XI 
(268) 

where xi and x2 are the classical turning points defined by En = V(x,) = V(x2). For the potential 
V, (x) corresponding to the superpotential W(x), the quantization condition (268) takes the form 

2m[ EA*’ -W’(x)ldx = (n + 1/2)fi7r. (269) 

Let us assume that the superpotential W(x) is formally 0( ti’). Then, the W’ term is clearly 0( ti). 
Therefore, expanding the left hand side in powers of ti gives 

b b 

SJ 
2m[ EA” -M”(x)ldx+;/ 

W’(x)dx 
J_+**‘= (n+ 1/2)h (270) 

(I (I 

where a and b are the turning points defined by Ei ‘) = w2 (a) = w2 (b) . The 0( ti) term in eq. (270) 
can be integrated easily to yield 

ii . _, W(x) b 
-sm Jg U* 2 [ 1 (271) 

In the case of unbroken SUSY, the superpotential W(x) has opposite signs at the two turning points, 
that is 

-W(a) = W(b) = @. (272) 

For this case, the 0( hi) term in (271) exactly gives h7r/2, so that to leading order in ti the SWIG3 
quantization condition when SUSY is unbroken is [79,80] 

b 

SJ 
2m[ E,$” -w(x)]dx=nh, n=0,1,2 ,... (273) 

a 

Proceeding in the same way, the SWKEl quantization condition for the potential V,(x) turns out to 
be 

b 

SJ 
2m [ EL2’ -v(x)]dx=(n+l)tirr, n=0,1,2 ,... 

a 

Some remarks are in order at this stage. 

(274) 
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(i) For n = 0, the turning points a and b in Eq. (273) are coincident and Eh” = 0. Hence SWKB is 
exact by construction for the ground state energy of the Hamiltonian Hr = ( -@/2m) d2/dx2 + V, (x). 

(ii) On comparing Eqs. (273) and (274)) it follows that the lowest order SWKB quantization 
condition preserves the SUSY level degeneracy i.e. the approximate energy eigenvalues computed 
from the SWKB quantization conditions for V, (x) and V,(x) satisfy the exact degeneracy relation 
,@‘) = E;2’. 

n+l 
(iii) Since the lowest order SWKB approximation is not only exact as expected for large 12, but 

is also exact by construction for it = 0, hence, unlike the ordinary WKB approach, the SWKB 
eigenvalues are constrained to be accurate at both ends of allowed values of n at least when the 

spectrum is purely discrete. One can thus reasonably expect better results than the WKB scheme. 

6.2. Exactness of the SWKB condition for shape invariant potentials 

How good is the SWKB quantization condition [Eq. (273) ]? To study this question, the obvious 
first attempts consisted of obtaining the SWKB bound state spectra of several analytically solvable 
potentials like Coulomb, harmonic oscillator, Morse, etc. [79,80]. In fact, it was soon shown that 
the lowest order SWKB condition gives the exact eigenvalues for all SIPS [45] ! The proof of 
this statement follows from the facts that the SWKB condition preserves the level degeneracy and a 
vanishing ground state energy eigenvalue. For the hierarchy of Hamiltonians H(“) discussed in Section 
3, the SWKB quantization condition takes the form 

2m[Ei”) - kR(ak) - W(a,;x)]dx = nfm. 
k=l 

(275) 

Now, since the SWKB quantization condition is exact for the ground state energy when SUSY is 
unbroken, hence 

E,!f’ = 2 i?(ak) 
k=l 

(276) 

as given by Eq. (275), must be exact for Hamiltonian H cs). One can now go back in sequential 
manner from HcS) to H(S-‘) to Ht2) and H(‘) and use the fact that the SWKB method preserves the 
level degeneracy E,+, (I) = Ei2). On using this relation n times , we find that for all SIPS, the lowest order 
SWKB condition gives the exact energy eigenvalues [ 451. This is a very substantial improvement 
over the usual WKB formula Eq. (268) which is not exact for most SIPS. Of course, one can 
artificially restore exactness by ad hoc Langer-like corrections [ 1521. However, such modifications 
are unmotivated and have different forms for different potentials. Besides, even with such corrections, 
the higher order WKB contributions are non-zero for most of these potentials [ 152,153]. 

What about higher order SWKB contributions? Since the lowest order SWKB energies are exact 
for shape invariant potentials, it would be nice to check that higher order corrections vanish order by 
order in fi. By starting from the higher order WKB formalism, one can readily develop the higher 
order SWKB formalism [ 831. It has been explicitly checked for all known SIPS that up to 0( ti6) 
there are indeed no corrections. This result can be extended to all orders in fi [ 84,851. Conditions 
on the superpotential which ensure exactness of the lowest order SWKB condition have been given 
in Ref. [ 851. 
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It has been proved above that the lowest order SWKB approximation reproduces the exact bound 
state spectrum of any SIP. This statement has indeed been explicitly checked for all SIPS known 
until last year i.e. solutions of the shape invariance condition involving a translation of parameters 
a2 = al + constant. However, it has recently been shown [ 1541 that the above statement is not true for 
the newly discovered class [58-60,135] of SIPS discussed in Section 4.2.2, for which the parameters 
a2 and al are related by scaling u2 = qul. What is the special feature of these new potentials that 
interferes with the proof that Eq. (273) is exact for SIPS? To understand this, let us look again at 
the derivation of the lowest order SWKB quantization condition. In the derivation, IV2 is taken as 
O(ti’) while tiW’ is 0( ti) and hence one can expand the integrand on the left hand side in powers 
of ti. This assumption is justified for all the standard SIPS [ 1454,551 since W2 is indeed of 0( ti’) 
while hW’ is indeed of 0(/i,). One might object to this procedure since the resulting potential VI is 
then h-dependent. However, in all cases, this h-dependence can be absorbed into some dimensionful 
parameters in the problem. For example, consider 

W(x) = A tanhx, V,(X) = A2 - A(A + ti)sech2x. (277) 

Taking A such that A( A + h) is independent of ti gives the desired h-independent potential (the 
additive constant is irrelevant and so can contain ti). Such a move may appear to be of limited 
value since one cannot apply SWKB directly to a super-potential W which is now h-dependent. 
However, because A is a free parameter, one can continue the SWKB results obtained for A (and 
hence W) independent of fi over to this superpotential and so obtain an SWKB approximation for a 

h-independent potential. 
What about the new potentials? In the simplest of these cases, the only free parameter in the problem 

(apart from q) is the combination R I ,, on which W depends as W(x, Rlal) = fiF(mx/ti). a 

Incorporating different dependences on ti in Rlul will give different ones in W, V, and E,,, but F is 
a sufficiently complicated function that there is no way of eliminating fi from w. This is a direct 
consequence of the scaling reparameterisation u2 = qul not involving fi. If V(X; al) were independent 
of ti, so would t@(x; a2) be and in taking the lowest order of the shape invariance condition one 
would get w2( x; al) = w2 (x; a2), which corresponds to the harmonic oscillator. Furthermore, with 
u2 = qal, W and tLW’ are now of a similar order in ti. The basic distinction between them involved in 
deriving Eq. (273) is thus no longer valid and we are prevented from deriving the SWKB condition 
for these new potentials. 

We thus see that the SWKB quantization condition is not the correct lowest order formula in 
the case of the new SIPS and hence it is not really surprising that Eq. (273) does not give the 
exact eigenvalues for these potentials. In other words, it remains true that the lowest order SWKB 
quantization condition is exact for SIPS (if the SUSY is unbroken), but only in those cases for which 
the formula is applicable in the first place. It is thus still the case that the SIPS given in Refs. [ 54,551 
are the only known ones for which the lowest order SWKB formula is exact and the higher order 
corrections are all zero. 

6.3. Comparison of the SWKB and WKB approaches 

Let us now compare the merits of the two schemes [ WKB and SWKB] . For potentials for which 
the ground state wave function (and hence the superpotential W) is not known, clearly the WKB 
approach is preferable, since one cannot directly make use of the SWKB quantization condition Eq. 
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(273). On the other hand, we have already seen that for shape invariant potentials, SWKB is clearly 
superior. An obvious interesting question is to compare WKB and SWKB for potentials which are 
not shape invariant but for whom the ground state wave function is known. One choice which readily 
springs to mind is the Ginocchio potential given by [57] 

V(x) = (1 - y2> -h2V(V + 1) + 
i 

(1 -AZ) 
4 [2 - (7 - A2)y2 + 5( 1 - A2)y41 

I 

where y is related to the independent variable x by 

g=(l-y2)[1-(l-A2)y2]. 

(278) 

(279) 

Here the parameters v and A measure the depth and shape of the potential respectively. The corre- 
sponding superpotential is [ 521 

W(x) = (1 - A2)y(y2 - 1)/2 + ,uc,A2y 

where p,, is given by [57] 

(280) 

p,A2 = [A*(v+ 1/2)2+ (1- A2)(n+ 1/2)2] -(n+ l/2) 

and the bound state energies are 

(281) 

-Cl = -&A4, n=0,1,2,... (282) 

For the special case A = 1, one has the Rosen-Morse potential, which is shape invariant. The spectra of 
the Ginocchio potential using both the WKB and SWKB quantization conditions have been computed 
[ 901. The results are shown in Table 6.1. In general, neither semiclassical method gives the exact 
energy spectrum. The only exception is the shape invariant limit A = 1, in which case the SWKB 
results are exact, as expected. Also, for 12 = 0, 1 the SWKB values are consistently better, but there is 
no clear cut indication that SWKB results are always better. This example, as well as other potentials 
studied in Refs. [ 86-901, support the conjecture that shape invariance is perhaps a necessary condition 
for the lowest order SWKB approximation to yield the exact spectrum [ 901. 

So far, we have concentrated our attention on the energy eigenvalues. For completeness, let us note 
that several authors have also obtained the wave functions in the SWKB approximation [ 79,91-931. 
As in the WKB method, the SWKB wave functions diverge at the turning points a and b. These 
divergences can be regularized either by the uniform approximation [ 91,155] or by appropriate 
retention of higher orders in ti [ 92,931. 

6.4. SWKB quantization condition fur broken super-symmetry 

The derivation of the lowest order SWKB quantization condition for the case of unbroken SUSY 
is given in Section 6.1 [Eqs. (268) to (273)]. For the case of broken SUSY, the same derivation 
applies until one examines the O(h) term in Eq. (271). Here, for broken SUSY, one has 

W(a) = W(b) = @ (283) 
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Table 6.1 

Comparison of the lowest order WKB and SWKB predictions for the bound state spectrum of the Ginocchio potential for 
different values of the parameters A, Y and several values of the quantum number n. The exact answer is also given. Units 
corresponding to fi = 2m = 1 are used throughout. 

WKB Exact WKB Exact 
n A = 0.5, u = 5.5 SWKB value A = 6.25, v = 5.5 SWKB value 

0 -6.18694 -6.40641 -6.40641 -1372.28112 - 1359.61147 -1359.61147 
1 -3.07965 -3.16971 -3.12998 -1228.15761 -1212.7014 -1213.8388 
2 - 1.43039 - 1.46768 -1.43919 -1012.52312 -999.6307 -1003.70301 
3 -0.58466 -0.60078 -0.58474 -733.58861 -727.7175 -737.62022 
5 -0.017014 -0.018750 -0.016684 -55.26983 -70.5885 - 109.5019 

WKB Exact WKB Exact 

n A = 0.5, v = 10.5 SWKB value A = 6.25, v = 10.5 SWKB value 

0 -24.86661 -25.17048 -25.17048 -4659.878 -4648.6161 -4648.6161 
1 -17.09183 -17.27213 - 17.23352 -4452.736 -4438.321 -4438.7989 
2 - 11.57071 - 11.67790 - 11.63352 -4174.482 -4158.478 -4159.4341 

3 -7.70199 -7.76673 -7.72800 -3828.490 -3812.566 -3815.6502 

5 -3.15100 -3.17611 -3.15352 -2949.599 -2978.741 -2947.7017 

and the 0( ti) term in (271) exactly vanishes. So, to leading order in ti the SWKB quantization 
condition for broken SUSY is [ 94,96 J 

b 

N 2m[ EP - Wz(x)]dx=(n+1/2)~7r, n=0,1,2 ,... (284) 
(I 

As before, it is easy to obtain the quantization condition which includes higher orders in ti [96] and 
to test how well the lowest order broken SWKB condition works for various specific examples. As for 
the case of unbroken SUSY, it is found that exact spectra are obtained for shape invariant potentials 
with broken SUSY [95]. For potentials which are not analytically solvable, the results using Eq. 
(284) are usually better than standard WKB computations. Further discussion can be found in Ref. 

[W. 

7. Isospectral Hamiltonians 

In this section, we will describe how one can start from any given one-dimensional potential 
V, (x) with TZ bound states, and use supersymmetric quantum mechanics to construct an n-parameter 
family of strictly isospectral potentials V, (hi, AZ, . . . , A,; x) i.e., potentials with eigenvalues, reflection 
and transmission coefficients identical to those for VI (x) . The fact that such families exist has been 
known for a long time from the inverse scattering approach [ 671, but the Gelfand-Levitan approach to 
finding them is technically much more complicated than the supersymmetry approach described here. 
Indeed, the advent of SUSY QM has produced a revival of interest in the determination of isospectral 
potentials [ 65,68,69,156-1581 [ 66,70,72,75]. In Section 7.1 we describe how a one parameter 
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isospectral family is obtained by first deleting and then re-inserting the ground state of Vi (x) using 
the Darboux procedure [ 64,701. The generalization to obtain an n-parameter family is described in 
Section 7.2 [ 721. When applied to a reflectionless potential (Section 7.3)) the n-parameter families 
provide surprisingly simple expressions for the pure multi-soliton solutions [75] of the Korteweg-de 

Vries (KdV) and other nonlinear evolution equations [ 159,160,138,161,162]. 

7.1. One parameter family of isospectral potentials 

In this subsection, we describe two approaches of obtaining the one-parameter family Vi (A, ; x) of 
potentials isospectral to a given potential Vi (x) . 

The first approach follows from asking the following question: Suppose V,(x) is the SUSY partner 
potential of the original potential V, (x) , and let W(x) be the superpotential such that V,(x) = w2 + W’ 
and V, (x) = w - W’. Then, given V2 (x) , is the original potential V, (x) unique i.e., for a given V,(x) , 
what are the various possible superpotentials l?(x) and corresponding potentials pi (x) = w - @‘? 
Let us assume [68] that there exists a more general superpotential which satisfies 

v,(x) = P*(x) + W(x). (285) 

Clearly, @ = W is one of the solutions to Eq. (285). To find the most general solution, let us set 

P(x) = W(x) + 4(x> (286) 

in Eq. (285). We find then that y(x) = $-I (x) satisfies the Bernoulli equation 

y’(x) = 1 + 2wy (287) 

whose solution is 

& = 4(x> = $ W&(x) + Al]. 

Here 

Z,(x) z J tg(X’)dX’. (289) 

-cm 

hi is a constant of integration and cc/, (x) is the normalized ground state wave function of Vi (x) = 
w2( x) - W’(x) . Thus the most general p(x) satisfying Eq. (285) is given by 

P(x) = W(x) + $ln[Zi(x) + AlI, (290) 

so that the one parameter family of potentials 

~(x)=iirz(x) -P(x) =v(x) -2$ln[&(x) +A,] 

has the same SUSY partner V,(x). 

(291) 

In the second approach, we delete the ground state (CI, at energy El for the potential V, (x) . This 

generates the SUSY partner potential V,(x) = V, - 2s ln@i, which is almost isospectral to V, (x) 
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i.e., it has the same eigenvalues as V, (x) except for the bound state at energy El. The next step is to 
reinstate a bound state at energy El. 

Although the potential V2 does not have an eigenenergy El, the function 1 /I,$, satifies the Schrodinger 
equation with potential V, and energy El. The other linearly independent solution is J_“, @IT (x’) d~‘/@~. 
Therefore, the most general solution of the Schrijdinger equation for the potential V, at energy El is 

@l (AI > = (11 + Al I/h * (292) 

Now, starting with a potential V,, we can again use the standard SUSY (Darboux) procedure to 
add a state at El by using the general solution @i (Ai ), 

fi(A,) = V, -2$lnG1(A1). (293) 

The function I/@ (Ai ) is the normalizable ground state wave function of fi (Al ), provided that A, 
does not lie in the interval -1 5 Al 5 0. Therefore, we find a one-parameter family of potentials 
q (Ai ) isospectral to Vi for A, > 0 or Ai < -1. 

fi(A1)=&-2-$ln($1@1(Ai))=C;-2 $ln(*i + Al). (294) 

The corresponding ground state wave functions are 

&(A,;x) = l/MA,). (295) 

Note that this family contains the original potential VI. This corresponds to the choices hi -+ &co. 
To elucidate this discussion, it may be worthwhile to explicitly construct the one-parameter family 

of strictly isospectral potentials corresponding to the one dimensional harmonic oscillator [ 701. In 
this case 

W(X) = ;X (296) 

so that 

v,(x) = $2 - ;. 
The normalized ground state eigenfunction of V, (x) is 

9% (x) = (z)“4exp(-WX2/4) 

Using Eq. (289) it is now straightforward to compute the corresponding Zi (x) . We get 

00 

; erfc(x) = -?- 
s 

J;;x 

e-“dt. 

(297) 

(298) 

(299) 

Using Eqs. (294) and (295)) one obtains the one parameter family of isospectral potentials and 
the corresponding wave functions. In Figs. 7.1 and 7.2, we have plotted some of the potentials and 
wave functions for the case o = 2. We see that as A1 decreases from 00 to 0, ?, starts developing a 
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Fig. 7.1. Selected members of the family of potentials with energy spectra identical to the one dimensional harmonic 
oscillator with o = 2. The choice of units is ti = 2m = 1. The curves are labeled by the value Al, and cover the range 
0 < hr 5 cc. The curve AI = cc is the one dimensional harmonic oscillator. The curve marked Al = 0 is known as the 
Pnrsey potential [ 661 and has one bound state less than the oscillator. 

0.25 

0.00 
-4 -2 0 2 4 

x 

Fig. 7.2. Ground state wave functions for all the potentials shown in Fig. 7.1, except the Pursey potential. 

minimum which shifts towards x = --03. Note that as A, finally becomes zero this attractive potential 
well is lost and we lose a bound state. The remaining potential is called the Pursey potential VP (x) 
[ 661. The general formula for V,(x) is obtained by putting Al = 0 in Eq. (294). An analogous 
situation occurs in the limit Al = -1, the remaining potential being the Abraham-Moses potential 

[651. 

7.2. Generalization to n-parameter isospectral family 

The second approach discussed in the previous subsection can be generalized by first deleting 
all 12 bound states of the original potential VI (x) and then reinstating them one at a time. Since 
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VI v2 v3 ~2&) 

E2 ----______ 
da ww = (12 + WA l/@z(U 

El ----_-_-_ -_------- ---- ----_ 

*1 @l(h) = (II t X,)/h %(AI, h) = &WA(~L) I/@l(h,b) 

Fig. 7.3. A schematic diagram showing how SUSY transformations are used for deleting the two lowest states of a potential 
VI (x) and then re-inserting them, thus producing a two-parameter (Al, AZ) family of potentials isospectral to VI (x). 

one parameter is generated every time an eigenstate is reinstated, the final result is a n-parameter 
isospectral family [ 721. Recall that deleting the eigenenergy El gave the potential V2 (x) . The ground 
state $2 for the potential V, is located at energy E2. The procedure can be repeated “upward”, 

producing potentials V,, Vq, . . . with ground states fiJ, @J/4, . . . at energies E3, E4, . . , , until the top 
potential V,+i (x) holds no bound state (see Fig. 7.3, which corresponds to n = 2). 

In order to produce a two-parameter family of isospectral potentials, we go from & to V, to V, by 
successively deleting the two lowest states of V, and then we re-add the two states at E2 and El by 
SUSY transformations. The most general solutions of the Schrijdinger equation for the potential V, 
are given by c&( AZ) = (12 + Az)/$z at energy Ez, and A& ( Al ) at energy El (see Fig. 7.3). The 
quantities Zi are defined by 

x 

l&(x) 2 s #;(x')dx'. (300) 
-co 

Here the SUSY operator Ai relates solutions of the potentials 4 and x+,, 

Ai = -$ - (ln&)‘. (301) 

Then, as before, we find an isospectral one-parameter family 4 (AZ), 

fi(A2) = V, - 2$ln(Z, + AZ). (302) 

The solutions of the Schriidinger equation for potentials V, and &( AZ) are related by a new SUSY 
operator 

di(A.,) = -g + (ln&(A2))‘. 

Therefore, the solution @i (hi, AZ) at El 

@I(AI,Az) =&AhWdAd. 

The normalizable function 1 /CD, (Ai, AZ) 
in a two-parameter family of isospectral 

(303) 

for G(A2) is 

(304) 

is the ground state at El of a new potential, which results 
systems fi (Al, A2), 



328 I? Cooper et al./Physics Reports 251 (1995) 267-385 

@(Add = V, -2~ln(d,hs,(n,)m,(r,,A~~~ 

=V, -2~lnO~(K+A2)~1(A,,A2))r (305) 

for Ai > 0 or Ai < -1. A useful alternative expression is 

fi(A,,A2) =-9zV2) +2(~~(A,,A2)/~l(Al,h2))2+2E1. (306) 

The above procedure is best illustrated by the pyramid structure in Fig. 7.3. It can be generalized to 
an n-parameter family of isospectral potentials for an initial system with IZ bound states. The formulas 

for an n-parameter family are 

@(hi) = (Z+A;)/&, i= l,...,n; 

Ai = $ - (In&)‘; 

&Ai,-,h,) = -$ + (ln@i(Ai, . . .,A,))‘; 

@i(Ai, Ai+i, * * * 3 A,) = Af+r(Ai+i, Ai+ * 1 .,A,)$+2(Ai+2, Ai+j,. . .) A,) 

x A,A,_, . . .Ai+&(Aj); 

fi(A,, . . . , A,,) = V, - 2& ln(cGI1@2 

The above equations [72] summarize the 

. ..(Cln@n(An> . ..@l(Al....,&,)) 

main results of this section. 

(307) 

(308) 

(309) 

(310) 

(311) 

7.3. n-soliton solutions of the KdV equation 

As an application of isospectral potential families, we consider reflectionless potentials of the form 

V, = -n(n + l)sech2x, (312) 

where n is an integer, since these potentials are of special physical interest. V, holds n bound states, 
and we may form a n-parameter family of isospectral potentials. We start with the simplest case 
n = 1. We have V, = -2sech2x, El = -1 and til = 2-‘/2sechx. The corresponding l-parameter family 
is 

?,(A,) = -2sech2 x+ iln(l + !-) . 
> 

Clearly, varying the parameter A, corresponds to translations of VI (x) . 
O+ (Pursey limit) and - 1 - (Abraham-Moses limit), the minimum of 
and +CG respectively. - 

(313) 

As hi approaches the limits 
the potential moves to -KJ 

For the case n = 2, VI = -6sechLx and there are two bound states at E, = -4 and E2 = - 1. 
The SUSY partner potential is V2 = -2sech2x. The ground state wave functions of V, and V2 are 

@II = i&sech2x and & = ifisechx. Also, Zi = i(3tanhx - tanh3x + 2) and 12 = i(tanhx + 1). 
After some algebraic work, we obtain the 2-parameter family 
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,. [3+4cosh(2x-2&) +cosh(4x-2&)] 

‘(hi’h2)=-12,cosh(3x-62-S1)+3cosh(x+82-8S1)]2’ 

si = -; ln(1 + t,, i= 1,2, 
I 

As we let Ai -+ - 1, a well with one bound state at El will move in the +x direction leaving behind a 
shallow well with one bound state at E2. The movement of the shallow well is essentially controlled 
by the parameter AZ. Thus, we have the freedom to move either one of the wells. 

It is tedious but straightforward to obtain the result for arbitrary n and get fi (Ai, AZ, . . . , A,,, x). 

It is well known that one-parameter (t) families of isospectral potentials can also be obtained as 
solutions of a certain class of nonlinear evolution equations [ 159,160,138,162]. These equations have 

the form (q = 0, 1,2, . . .) 

-ur = (L,)qux 

where the operator L, is defined by 

(314) 

00 

LJ(x) = fxn - 4uf + 2u, 
s 

dyf(y) (315) 

and u is chosen to vanish at infinity. [For q = 0 we simply get -ur = u,, while for q = 1 we obtain 
the well studied Korteweg-de Vries (KdV) equation]. These equations are also known to possess 
pure (i.e., reflectionless) multisoliton solutions. It is possible to show that by suitably choosing 
the parameters hi as functions of t in the n-parameter SUSY isospectral family of a symmetric 
reflectionless potential holding II bound states, we can obtain an explicit analytic formula for the 
pure n-soliton solution of each of the above evolution equations [ 751. These expressions for the 
multisoliton solutions of Eq. (314) are much simpler than any previously obtained using other 
procedures. Nevertheless, rather than displaying the explicit algebraic expressions here, we shall 
simply illustrate the 3-soliton solution of the KdV equation. The potentials shown in Fig. 7.4 are 
all isospectral and reflectionless holding bound states at El = -25/ 16, E2 = - 1, Es = -16/25 . As t 

increases, note the clear emergence of three independent solitons. 
In this section, we have found n-parameter isospectral families by repeatedly using the supersym- 

metric Darboux procedure for removing and inserting bound states. However, as briefly mentioned in 
Section 7.1, there are two other closely related, well established procedures for deleting and adding 
bound states. These are the Abraham-Moses procedure [ 651 and the Pursey procedure [ 661. If these 
alternative procedures are used, one gets new potential families all having the same bound state 
energies but different reflection and transmission coefficients. Details can be found in reference [ 711. 

8. Path integrals and supersymmetry 

In this section, we will describe the Lagrangian formulation of SUSY QM and discuss three related 
path integrals: one for the generating functional of correlation functions, one for the Witten index - 
a topological quantity which determines whether SUSY is broken, and one for a related “classical” 
stochastic differential equation, namely the Langevin equation. We will also briefly discuss the 
superspace formalism for SUSY QM. 
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-5 0 5 10 
x 

Fig. 7.4. The pure three-soliton solution of the KdV equation as a function of position (x) and time (t). This solution 
results from constructing the isospectral potential family starting from a reflectionless, symmetric potential with bound states 
at energies Et = -25/16, EZ = - 1, E3 = - 16/25. Further details are given in the text and Ref. [75]. 

Starting from the matrix SUSY Hamiltonian which is l/2 of our previous H [ eq. (60) ] for 
convenience: 

H = ip’ + iW2(X)Z - @9’lW’(x), 

we obtain the Lagrangian 

L = 4”2 + i$+a,$ - 3W2(x) + ;[$,@+]w’(X). (316) 

It is most useful to consider the generating functional of correlation functions in Euclidean space. We 
rotate t ---f ir and obtain for the Euclidean path integral: 

Z[j,r7,q*l = 
s 

[dxl[d~l[d~*lexp[--S~+ 
s 

jx+vb* +rl*til, (317) 

where 

7 

SE = 
s 

dT(&C; + ;wyX> - @*[a, - W’(X)](cI) 

0 

and Cc, and fi* are now elements of a Grassman algebra: 

{fi’,#/) = {ti,$> = (V,V) =O, (318) 

and 
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x, = dx/dr. 

The Euclidean action is invariant under the following 
bosonic and fermionic degrees of freedom: 

SUSY transformations [ 163,291 which mix 

sx = E*+ + (Cr’E, Sl)’ = --E* (&x + W(x)) ) S$ = --E (-&x + W(x)) , (319) 

where E and E* are two infinitesimal anticommuting parameters. These transformations correspond to 
N = 2 supersymmetry. 

The path integral over the fermions can now be explicitly performed using a cutoff lattice which 
is periodic in the the coordinate x but antiperiodic in the fermionic degrees of freedom at 7 = 0 and 
r = T. Namely we evaluate the fermionic path integral: 

(320) 

by calculating the determinant of the operator [c?, - W’(x) ] using eigenvectors which are antiperiodic. 
We have, following Gildener and Patrascioiu [ 1641, that 

det[d, - W’(x)] = n A,, 
m 

where 

[& - W’(x) l&n = hf4?t, 

so that 

JI,(r) = Gexp [kdT’L&, + “I] . 

Imposing the antiperiodic boundary conditions: 

(321) 

yields: 

T 

A, = 
i(2m-t l)g 1 

T 
- T 

s 
dTW’(x). (322) 

0 

Regulating the determinant by dividing by the determinant for the case where the potential is zero 
we obtain: 

det [“-r(X)] = cash Idry. 

0 

(323) 
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Rewriting the cash as a sum of two exponentials we find, as expected 
partition functions for the two pieces of the supersymmetric Hamiltonian. 
sources are zero: 

Tr eeH1r + Tr eVHzr g Z- + Z+. 

that Z is the sum of the 
Namely when the external 

For the case when SUSY is unbroken, only the ground state of Hi contributes as T 
have: 

Z* = J [ dx] exp[ -$] 

where 

p= TdT 
J ( 0 

r;“:“*!y). 

(324) 

00 We also 

(325) 

A related path integral is obtained for the noise averaged correlation functions coming from a 
classical stochastic equation, the Langevin equation. If we have the stochastic differential equation 

k = W(x(7)) + V(T) (326) 

where ~(7) is a random stirring forcing obeying Gaussian statistics, then the correlation functions of 
x are exactly the same as the correlation functions obtained from the Euclidean quantum mechanics 
related to the Hamiltonian Hi. To see this we realize that Gaussian noise is described by a probability 
functional: 

(327) 

normalized so that: 

J DW[ql= 1, 
J 

hP[rllf(T) = 03 

.I’ ~?7fmlf(am') = Fo&T - 7’). 

The correlation functions averaged over the noise are: 

(X(?)XCQ) . . .> = 1 hP[rllX(?)X(Q) * * * (328) 

where we have in mind first solving the Langevin equation explicitly for x( r] (7) ) and then averaging 
over the noise as discussed in Section 2.2. Another way to calculate the correlation function is to 
change variables in the functional integral from v to x. 

(329) 
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This involves calculating the functional determinant, 

(330) 

subject to the boundary condition that the Green’s function obey causality, so one has retarded 
boundary conditions. One has 

Detl$$ = exp/ dtTrln [$ - W’(x(r))]S(r- 7’) d7. ( 
> 

(331) 

When there are no interactions the retarded boundary conditions yield 

GO(r - 7’) = 8(r - 7’). (332) 

Expanding ln( 1 - GoW’) one finds because of the retarded boundary conditions that only the first 
term in the expansion contributes so that 

Detl$$$i =exp [i!dTW’(x)] . (333) 

Choosing F0 = ii so that 

P[T] =Nexp [--ii_%] =Nexp [--$/dT(i- W(x))2] 

T 

= Nexp -A 
J 

dT(k2 + W2(x)) , 1 0 
(334) 

we find that the generating functional for the correlation functions is exactly the generating functional 
for the correlation functions for Euclidean quantum mechanics corresponding to the Hamiltonian Hr : 

Z[j] = N/D[x] exp 1-f jdT(i2 + W2(x) 

L 0 

Thus we see that we can determine the correlation 

- W’(x) - 2j(r)x(7)) . 1 (335) 

functions of x for the Hamiltonian HI by either 
evaluating the path integral or solving the Langevin equation and averaging over Gaussian noise. 

An equation related to the Langevin equation is the Fokker-Planck equation, which defines the 
classical probability function PC for the equal time correlation functions of Hr. Defining the noise 

[VI (336 

average: 

PC(Z) = @(z - x(t& = JDrlS(z - x(t))P 

one obviously has: 

J dzz”P,(z, t) = J D?7[x(t)l”P[771 = (x”). 

> 
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One can show [ 1651 that PC obeys the Fokker-Planck equation: 

dP -_= 
dt $0 f$ + &[W(z)P(e,t))l. 

For an equilibrium distribution to exist at long times t one requires that 

P(z, t) --t B(z) 

and 

s Ej(z)dz = 1. 

Setting dP/& = 0 in the Fokker-Planck equation, we obtain 

P(z) =Nexp (-2ily(v)dy) =400(z12. 

(337) 

(338) 

Thus at long times only the ground state wave function contributes (we are in Euclidean space) 
and the probability function is just the usual ground state wave function squared. We see from this 
that when SUSY is broken, one cannot define an equilibrium distribution for the classical stochastic 
system. 

A third path integral for SUSY QM is related to the Witten index. As we discussed before, one 
can introduce a “fermion” number operator via 

1 - CT3 I- M~9’1 nF=-----= 
2 2 . 

(339) 

Thus 

(-ly= [$,t)+] =u3. (340) 

The Witten index is given by D = Tr( -l)F. As we discussed earlier, the Witten index needs to be 
regulated and the regulated index is defined as: 

A(,@ =Tr(-l)Fe-PH=Tr(e-PH’ -eePN2). (341) 

In Section 2.2 we showed how to determine A(p) using heat kernel methods and how it was useful 
in discussing non-perturbative breaking of SUSY. Here we will show that the Witten index can also 
be obtained using the path integral representation of the generating functional of SUSY QM where 
the fermion determinant is now evaluated using periodic boundary conditions to incorporate the factor 
(- l)F. It is easy to verify a posteriori that this is the case. Consider the path integral: 

P 

A(P) = /Ldxl lid91 CN*l exp /Ldx,lv,T*)dr , (342) 
0 

where 
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LE = ix;+ ;w2 - P*[a, - W’(x)]%? 

To incorporate the (- 1) F in the trace, one changes the boundary conditions for evaluating the fermion 
determinant at r = 0, p to periodic ones: 

The path integral over the fermions can again be explicitly performed using a cutoff lattice which is 
periodic in the fermionic degrees of freedom at 7 = 0 and r = p. We now impose these boundary 
conditions on the determinant of the operator [a, - W’(x)] using eigenvectors which are periodic. 

We again have 

det[& - W’(x)] = n A,,. 
m 

Imposing periodic boundary conditions: 

(343) 

Regulating the determinant by dividing by the determinant for the case where the potential is zero 
we obtain: 

(344) 

Again rewriting the sinh as a sum of two exponentials we find, as expected that we obtain the 
regulated Witten index: 

d(p) = Z- - 2, =Tre-PH’ - TreFPH2. (345) 

8.1. Superspace formulation of supersymmetric quantum mechanics 

One can think of SUSY QM as a degenerate case of supersymmetric field theory in d = 1 in the 
superspace formalism of Salam and Strathdee [ 1671 (This idea is originally found in unpublished 
lecture notes of S. Raby [ 1661). superfields are defined on the space (x,; 9,) where x is the space 
coordinate and 8, are anticommuting spinors. In the degenerate case d = 1 the field is replaced by 
x(t) so that the only coordinate is time. The anticommuting variables are 19 and 0’ where 

(0, e*} = (6,6} = [B, t] = 0. 

Consider the following SUSY transformation: 

t’=t-i(O*e-•*O), O’=O+e, ~*‘=O*+E*. (346) 

If we assume that finite SUSY transformations can be parametrized by 
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L = ,i(c*Q*+Qd 
7 

then from 

SA = i[e*Q* + QE, A] (347) 

we infer that the operators Q and Q* are given by: 

Q = id0 - 0*& Q* = -ids* - Od,. (348) 

Now these charges obey the familiar SUSY QM algebra: 

{Q, Q*} = 2i& = 2H, [Q, H] = 0. (349) 

The Lagrangian in superspace is determined as follows. A superfield made up of x and 19 and 8* can 
at most be a bilinear in the Grassman variables: 

4,(x, 19,0*> = X( t> + i&b(t) - i$*O* + ee*D(t). (350) 

Under a SUSY transformation, the following derivatives are invariant: 

DB = a, - ie*ar 

or in component form: 

D& = irC, - O*D - iO*k + ti*Ot,b, 

and 

De* = as. - iea, 

or in component form: 

[D&l * = -it,b* - 8D + iOi + 9*&j*. 

The most general invariant action is: 

(351) 

(352) 

s = J dtde*de(;p8+(2 - f(4)). (353) 

Again the expansion in terms of the Grassman variables causes a Taylor expansion of f to truncate 
at the second derivative level. Integrating over the Grassman degrees of freedom using the usual path 
integral rules for Grassman variables: 

/ede=Jeve*=l, /de=/de*=o, 

one obtains 

S= J dt(~12++*[a,-f”(x)]~+;D2+Df’(x)). (354) 

Eliminating the constraint variable D = --f’(x) = W(x) we obtain our previous result for the action 
(now in Minkowski space) : 

S= J dt( ;i2 + G* [a, - W’(x)]~ - $w’> (355) 
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A more complete discussion of this can be found in Ref. [ 111. 

9. Perturbative methods for calculating energy spectra and wave functions 

The framework of supersymmetric quantum mechanics has been very useful in generating several 
new perturbative methods for calculating the energy spectra and wave functions for one dimensional 
potentials. Four such methods are described in this section. 

In Sections 9.1 and 9.2, we discuss two approximation methods (the variational method and the S- 
expansion) for determining the wave functions and energy eigenvalues of the anharmonic oscillator 
making use of SUSY QM. Section 9.3 contains a description of a SUSY QM calculation of the 
energy splitting and rate of tunneling in a double well potential. The result is a rapidly converging 
series which is substantially better than the usual WKB tunneling formula. Finally, in Section 9.4, we 
describe how the large N expansion (N = number of spatial dimensions) used in quantum mechanics 
can be further improved by incorporating SUSY. 

9.1. Variational approach 

The anharmonic oscillator potential V(x) = gx4 is not exactly solvable. To determine the super- 
potential one has to first subtract the ground state energy EO and solve the Riccati equation for 

W(x): 

v, (x) = gx4 - EO G W2 - W’, (356) 

Once the ground state energy and the superpotential is known to some order of accuracy, one can 
then determine the partner potential and its ground state wave function approximately. Then, using 

the SUSY operator 

-$ - W(x) 

one can construct the first excited state of the anharmonic oscillator in the usual manner. Using the 
hierarchy of Hamiltonians discussed in Section 3, one can construct from the approximate ground 
state wave functions of the hierarchy and the approximate superpotentials W, all the excited states of 
the anharmonic oscillator approximately. 

First let us see how this works using a simple variational approach. For the original potential, we 
can determine the optimal Gaussian wave function quite easily. Assuming a trial wave function of 
the form 

we obtain 

(357) 

(358) (H)= ;+gx4 =;+s. ( ) 
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(In this subsection, we are taking m = 1 in order to make contact with published numerical results). 
Minimizing the expectation value of the Hamiltonian with respect to the parameter p yields 

E0 = ( 94/3g’/3 
4 

) p = ( 2)‘/3g’/3 
4 

This is rather good for this crude approximation since the exact ground state energy of the anharmonic 
oscillator determined numerically is EO = 0.668g’/3 whereas (4) 3 4/3 = 0.681. The approximate potential 
W resulting from this variation calculation is 

d log @o 
W(x) = - dx 

- = 2px, (359) 

which leads to a Gaussian approximation to the potential 

v,, =4/3x2 - 2p. (360) 

The approximate supersymmetric partner potential is now 

v,, = 4px2 + 2p. (361) 

Since V2c differs from Vi, by a constant, the approximate ground state wave function for V2 is given 
by Eq. (357). The approximate ground state energy of the second potential is now 

(H2) = “(Ol$ + V2G(O)? = H1 + 4p. (362) 

Thus we have approximately that the energy difference between the ground state and first excited 
state of the anharmonic oscillator is 

E, - Eo=4p=4($)“3g”3. 

The approximate (unnormalized) first excited state wave function is 

This method can be used to find all the excited state wave functions and energy levels of the 
anharmonic oscillator by using the methods discussed in Ref. [ 1681. 

Let us now look at a more general class of trial wave functions. If we choose for the trial ground 
state wave functions of the hierarchy of Hamiltonians, 

(364) 

we obtain much better agreement for the low lying eigenvalues and eigenfunctions. It is convenient 
in this case to first scale the Hamiltonian for the anharmonic oscillator, 

H= -;-$ +gx4, (365) 
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by letting x + x/g’i6 and H -+ g 1/3H. Then we find the ground state energy of the anharmonic 
oscillator and the variational parameters p1 and YZ~ by forming the functional 

Eo(PIvm) = (eel - r$ ++o). (366) 

Thus we first determine p1 and YZ~ by requiring 

=o 
- 0, 

LEO 
- 0. 

dp,- anl- (367) 

The equation for the energy functional for the anharmonic oscillator is 

(368) 

Minimizing this expression, we obtain the following variational result: 

E. = 0.66933, ~1~ = 1.18346, p1 = 0.666721. (369) 

This ground state energy is to be compared with a numerical evaluation which yields 0.667986. Since 
the trial wave function for all ground states is given by Eq. (364), the variational superpotential for 

all k is 

wk, = n&Cj2nk-1 (&) +. (370) 

Since we are interested in the energy differences E, - En_1 of the anharmonic oscillator, we consider 
the variational Hamiltonian 

&k+, = ;&A;, (371) 

which approximately determines these energy differences. We obtain the approximate energy splittings 
by minimizing the energy functional 

6Ek(pk, nk) = ;(@*l)( - $ + W,:, + W;kI~;‘k+‘)). 

Performing the integrals one obtains the simple recursion relation: 

(372) 

4 
%(Pkv nk) = 2pk 

+ z(Zn,-1 - 1) (fi) 

* 

(373) 

One can perform the minimization in p analytically leaving one minimization to perform numerically. 
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Table 9. I 
Comparison of the three lowest energy eigenvalues obtained by a variational method with the exact results. 

Level n P 

0 1.183458 0.666721 

1 0.995834 0.429829 

2 1.000596 0.435604 

En - En-1 
variation 

0.669330 

1.727582 
2.316410 

exact 

0.667986 

1.725658 
2.303151 

The results for the variational parameters and for the energy differences are presented in Table 9.1 
for the first three energy eigenvalues and compared with a numerical calculation, based on a shooting 
method. 

9.2. S expansion method 

In this method [78] we consider the anharmonic oscillator as an analytic continuation from the 
harmonic oscillator in the paramater controlling the anharmonicity. That is we consider simultaneously 
potentials of the form 

v, (x) = M2+Jx2+2S -C(S) = W2(x,S) - w’, (374) 

where M is a scale parameter, S measures the anharmonicity, and C is the ground state energy of the 
anharmonic oscilator. C is subtracted as usual from the potential so it can be factorized. The standard 
anharmonic oscillator corresponds to 6 = 1 and A4 = (2g) ‘I3 To approximately determine W(x) from . 

V, (x) we assume that both W(x) and V, (x) have a Taylor series expansion in S. Thus we write: 

O” P[ln(Mx2)]” O” 
v,(x) = M2x2x n, - c2E,S”, 

n=o IF0 
(375) 

where E, corresponds to the order Taylor expansion of the dependence of the ground state energy on 
the parameter 6. We assume 

W(x) = 2 6”W(,, (xl 3 (376) 
n=o 

and insert these expressions in Eq. (374) and match terms order by order. At lowest order in S the 
problem reduces to the supersymmetric harmonic oscillator. We have: 

W2 - W’ = M2x2 - 2E 0 0 O? (377) 

whose solution is 

W,(x) =Mx, EO= ;M 

To next order we have the differential equation: 

(378) 

dW1 
- - 2W, WO = -M2x2 ln( Mx2) + 2E, 
dx 

(379) 
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which is to be solved with the boundary conditionW,(O) = 0. The order 6 contribution to the energy 
eigenvalue El is determined by requiring that the ground state wave function be square integrable. 
Solving for WI we obtain 

x 

W’ (x) = -eMx2 
J 

dye-“‘y* [ M*y* ln( My*) - 2Ei 1. (380) 
0 

To first order in S the ground state wave function is now: 

Imposing the condition that +O vanishes at infinity, we obtain: 

E, = @+(3/2), ccl(x) = r’(x)/T(x). (381) 

Writing M = (2g) ‘j3, we find that the first two terms in the S expansion for the ground state energy 
are 

E = ;(2g)“3[ 1 + ;$(3/2)6]. (382) 

At S= 1, we get 

E = 0.6415g”3. (383) 

A more accurate determination of the ground state energy can be obtained by calculating up to order 
S* and then analytically continuing in S using PadC approximants. This is discussed in Ref. [ 1691. 

9.3. Supersymmetry and double well potentials 

Supersymmetric quantum mechanics has been profitably used to obtain a novel perturbation expan- 
sion for the probabililty of tunneling in a double well potential [ 341. Since double wells are widely 
used in many areas of physics and chemistry, this expansion has found many applications ranging 
from condensed matter physics to the computation of chemical reaction rates [ 3 l-33,170-180]. In 
what follows, we shall restrict our attention to symmetric double wells, although an extension to 
asymmetric double wells is relatively straightforward [ 1811. 

Usually, in most applications the quantity of interest is the energy difference t - El - E. between 
the lowest two eigenstates, and corresponds to the tunneling rate through the double-well barrier. The 
quantity t is often small and difficult to calculate numerically, especially when the potential barrier 
between the two wells is large. Here, we show how SUSY facilitates the evaluation of t. Indeed, using 
the supersymmetric partner potential V2 (x), we obtain a systematic, highly convergent perturbation 
expansion for the energy difference t. The leading term is more accurate than the standard WKB 
tunneling formula, and the magnitude of the nonleading terms gives a reliable handle on the accuracy 
of the result. 

First, we briefly review the standard approach for determining t in the case of a symmetric, 
one-dimensional double-well potential, V, (x), whose minima are located x = &x0. We define the 
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Fig. 9.1. A “deep” symmetric double well potential VI (x) with minima at x = fxo and its supersymmetric partner potential 

h(x). 

depth, D, of V, (x) by D G V, (0) - V, (x0). An example of such a potential is shown in Fig. 9.1. 
For sufficiently deep wells, the double-well structure produces closely spaced pairs of energy levels 
lying below V, (0). The number of such pairs, n, can be crudely estimated from the standard WKB 
bound-state formula applied to V, (x) for x > 0: 

W7T= 
J 
-[v,(o) - v,(x)p2dx, 

0 

(384) 

where x, is the classical turning point corresponding to energy VI (0) and we have chosen units where 
h = 2m = 1. We shall call a double-well potential “shallow” if it can hold at most one pair of bound 
states, i.e., yt 2 1. In contrast, a “deep” potential refers to n >_ 2. 

The energy splitting t of the lowest-lying pair of states can be obtained by a standard argument 
[ 1261. Let x(x) be the normalized eigenfnnction for a particle moving in a single well whose 
structure is the same as the right-hand well of V, (x) (i.e., x > 0). If the probability of barrier 
penetration is small, the lowest two eigenfunctions of the double-well potential Vj (x) are well 
approximated by 

G;;;(x) = [X(X) f xc-XNIJZ. (385) 

By integration of Schrbdinger’s equation for the above eigenfunctions, it can be shown that [ 1261 

t E El - I30 = 4/Y(O)x’(O), (386) 

where the prime denotes differentiation with respect to x. This result is accurate for “deep” potentials, 
but becomes progressively worse as the depth decreases. Use of WKB wave functions in Eq. (386) 

yields the standard result: 

tWm = {[2Vi”(xo)]‘/2/~}exp -271&(x) - Vi(xo)]‘/*dx 

( 1 

. (387) 

0 

The same result can also be obtained via instanton techniques [ 1821. 
Using the supersymmetric formulation of quantum mechanics for a given Hamiltonian, Hi = 

-d2/dx2 + VI (x), and its zero-energy ground state wave function $o(x), we know that the super- 
symmetric partner potential V2(x) is given by 
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v,(x) = v, (x> - w/w w;/eo) = -v (x> + w;l~ob>*. (388) 

Alternatively, in terms of the superpotential W(x) given by W(x) = --$~/t,ho we can write 

v,,,(x) = w*(x) 5 dW/dx. (389) 

From the discussion of unbroken SUSY in previous sections, we know that the energy spectra of 
the potentials V2 and VI are identical, except for the ground state of VI which is missing from the 
spectrum of VT [ lo]. Hence, for the double-well problem, we see that if VI (x) is “shallow” (i.e., 
only the lowest two states are paired), then the spectrum of V2 is well separated. In this case, V2 
is relatively structureless and simpler than V, . Previous papers [ 3 I-331 have implicitly treated just 
the case of shallow potentials, and, not surprisingly, have found that the use of SUSY simplifies the 
evaluation of the energy difference t. In contrast, let us now consider the case of a deep double well 
as shown in Fig. 9.1. Here, the spectrum of V2 has a single unpaired ground state followed by paired 
excited states. In order to produce this spectrum, V2 has a double-well structure together with a sharp 
“a-- function like” dip at x = 0. This central dip produces the unpaired ground state, and becomes 
sharper as the potential VI (x) becomes deeper. 

As a concrete example, we consider the class of potentials whose ground state wave function is 
the sum of two Gaussians, centered around &x0, 

#o(x) N e 
-(x-x0)Z + e-(x+x0)** 

(390) 

The variables x and x0 have been chosen to be dimensionless. The corresponding superpotential 
W(x), and the two supersymmetric partner potentials V, (x) and V,(x), are given respectively by 

W(x) = 2[x - x0 tanh(2xxo)], (391) 

V,,,(x) =4[x-xotanh(2xxo)]*f2[1 -2xisech2(2xxo)]. (392) 

The minima of V, (x) are located near &x0 and the well depth (in the limit of large x0) is D N 4x;. 
We illustrate the potentials V, (x) and V,(x) in Fig. 9.2 for the two choices x0 = 1.0 and x0 = 2.5. 
We see that in the limit of large x0, for both VI (x) and V*(x), the wells become widely separated 
and deep and that V,(x) develops a strong central dip. 

The asymptotic behavior of the energy splitting, t, in the limit x0 + 00 can be calculated from Eq. 
(386), with x(x) given by one of the (normalized) Gaussians in Eq. (390). We find that 

t -+ 8x0 (2/q) 1’2e-2”t. (393) 

The same result can be obtained by observing that V, (x) --f 4() x 1 -x0)* as x0 --f 00. This potential 
has a well known [ 1831 analytic solution, which involves solving the parabolic cylindrical differential 
equation. After carefully handling the boundary conditions, one obtains the separation of the lowest 
two energy levels to be 8x0 (2/r) ‘/* exp( -2x;), in agreement with Eq. (393). 

We now turn to the evaluation of t via the ground state energy of the supersymmetric partner 
potential V2 (x). In general, since V,(x) is not analytically solvable, we must solve an approximate 
problem and calculate the corrections perturbatively. The use of SUSY, coupled with the observation 
that the magnitude of t is in general small, allows us to construct a suitable unperturbed problem. 
Consider the Schrijdinger equation for V*(x) and E = 0. From supersymmetry [Eq. (388) I we see 
immediately that l/Go is a solution. Since t is small, we expect this solution to be an excellent 
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Fig. 9.2. Supersymmetric partner potentials VI(X) and Vz( x) corresponding to two choices of the parameter x0 for the 
potentials given in Eq. (392). For a detailed discussion, see the text and Ref. [34]. 

approximation to the correct eigenfunction for small values of x. However, l/& is not normalizable 
and hence is not acceptable as a starting point for perturbation theory. One possibility is to regularize 
the behavior artificially at large 1x1 [ 3 11. This procedure is cumbersome and results in perturbation 
corrections to the leading term which are substantial. Instead, we choose for our unperturbed problem 
the second linearly independent solution of the Schrodinger equation given by [ 1841 

(394) 

and $(x) = 4(-x) for x < 0. Clearly, +( ) x is well behaved at x = foe and closely approximates 
l/(cro at small x; thus we expect it to be an excellent approximation of the exact ground state wave 
function of V,(x) for all values of x. The derivative of 4(x) is continuous except at the origin, where, 
unlike the exact solution, it has a discontinuity 4],,+ - 410_ = -2$,,(O). Hence 4(x) is actually a 
zero-energy solution of the Schrodinger equation for a potential Vo( x) given by 

v,(x) = v,(x) - 4~;(O)~(x)~ (395) 

where we have assumed that +0(x) is normalized. We calculate the perturbative corrections to 
the ground state energy using AV = +4# (0) 6( ) x as the perturbation. Note that the coefficient 
multiplying the Munction is quite small so that we expect our perturbation series to converge rapidly. 

For the case of a symmetric potential such as V,(x), the perturbative corrections to the energy 
arising from AV can be most simply calcualted by use of the logarithmic perturbation-theory [ 1851 
formulation of the usual Rayleigh-Schrodinger series. The first and second order corrections to the 
unperturbed energy E = 0 are 

1 
E(l) = - 

25(O) ’ 
x 

Ec2’ = -2[[E;;;)]2~x( (396) 
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Fig. 9.3. The energy splitting t = El - & as a function of the separation 2x0 of the superposed Gaussians in the ground 
state wave function @O(X). This figure, taken from Ref. [34], shows the remarkable accuracy of the SUSY-based energy 
splitting computations for a double well potential. 

For our example, we numerically evaluate these corrections in order to obtain an estimate of t. 
The results are shown in Fig. 9.3 for values of x0 < 2. Estimates of t correct to first, second, and 
third order calculated from logarithmic perturbation theory are compared with the exact result for 
V,, obtained by the Runge-Kutta method. The asymptotic behavior of t given by Eq. (393) is also 
shown. This asymptotic form can also be recovered from Eq. (396) by a suitable approximation of 
the integrand in the large-x0 limit. Even for values of x0 5 l/d, in which case Vi (x) does not 
exhibit a double-well structure, the approximation technique is surprisingly good. The third-order 
perturbative result and the exact result are indistinguishable for all values of x0. 

In conclusion, we have demonstrated how SUSY can be used to calculate t, the energy splitting for 
a double-well potential. Rather than calculating this splitting as a difference between the lowest-lying 
two states of V, (x), one can instead develop a perturbation series for the ground state energy t of the 
partner potential V,(x) . By choosing as an unperturbed problem the potential whose solution is the 
normalizable zero-energy solution of V2 (x) , we obtain a very simple &-function perturbation which 
produces a rapidly convergent series for t [ 341. The procedure is quite general and is applicable to 
any arbitrary double-well potential, including asymmetric ones [ 1811. The numerical results are very 
accurate for both deep and shallow potentials. 

9.4. Supersymmetry and large-N expansions 

The large-N method, where N is the number of spatial dimensions, is a powerful technique for 
analytically determining the eigenstates of the Schrodinger equation, even for potentials which have 
no small coupling constant and hence not amenable to treatment by standard perturbation theory 
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[ 186-188,190-195,200]. A slightly modified, physically motivated approach, called the “shifted 
large-N method” [ 196-1991 incorporates exactly known analytic results into l/N expansions, greatly 
enhancing their accuracy, simplicity and range of applicability. In this subsection, we will descibe 
how the rate of convergence of shifted l/N expansions can be still further improved by using the 
ideas of SUSY QM [ 771. 

The basic idea in obtaining a l/N expansion in quantum mechanics consists of solving the 
Schrodinger equation in N spatial dimensions, assuming N to be large, and taking l/N as an 
“artificially created” expansion parameter for doing standard perturbation theory. At the end of the 
calculation, one sets N = 3 to get results for problems of physical interest in three dimensions. 

For an arbitrary spherically symmetric potential V(r) in N dimensions, the radial Schrodinger 
equation contains the effective potential 

Kff(r> = V(r) + 
(k-W-3)fL2, k=N+21 

8mr2 
(397) 

It is important to note that N and I always appear together in the combination k = N + 21. This 
means that the eigenstates, which could in principle have depended on the three quantities N, 1, IZ, in 
fact only depend on k and n, where n is the radial quantum number which can take values 0, 1,2, . . . 

One now makes a systematic expansion of eigenstates in the parameter l/&, where i; = k - a. Of 
course, for very large values of N, the two choices z and k are equivalent. However, for N = 3 
dimensions, a properly chosen shift a produces great improvements in accuracy and simplicity. For 
power law potentials V(r) = Ar”, the shift parameter a is taken to be [ 1961 

a=2-(2n+l)JYT-2. 

This choice is motivated by requiring the l/R expansion to yield the exact eigenvalues for the cases 
v = -1 (Coulomb potential) and v = -2 (harmonic oscillator), which are not only of physical 
interest but also analytically solvable in N-dimensions. For general sperical potentials V(r), the shift 
a is chosen so as to make the “next to leading contribution” in the l/i expansion vanish [ 1971. At 
small values of r, the yt = 0 wave function fiO (r) has the behavior r(k-‘)/2. If one sets 

@0(r) = r 
w)/2@o(r) 

(3% 

where @o(r) is finite at the origin, then Eq. (398) readily gives the supersymmetric partner potential 
of V&(r) to be 

Vi(r) = V(r) + 
(kf l)(k- l)ti2 ti2 d2 

8mr2 
- --2 ln@0(r). (399) 

V2( r) and V,,(r) have the same energy values [except for the ground state]. However, large-N 
expansions with the partner potential V2( r) are considerably better since the angular momentum 
barrier in Eq. (399) is given by (k’ - 1) (k’ - 3)h2/8mr2, where k’ = k + 2. So, effectively, one 
is working in two extra spatial dimensions! Thus, for example, in order to calculate the energy of 
the state with quantum numbers k, II of V&(r) one can equally well use k’ = k + 2, II - 1 with 
V2 (r) . To demonstrate this procedure, let us give an explicit example. Using the usual choice of units 
ti = 2m = 1, the s-wave Hulthen effective potential in three dimensions and its ground state wave 
function are: 
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t$(r) = -p--:ir + C2;Q2, &)(r) N (1 - e-~r)e-(2-w2, 

where the parameter 6 is restricted to be less than 2. The supersymmetric partner potential is 

2S2ep8’ 

(400) 

(401) 

As r tends to zero, &H goes like 2r-2, which as mentioned above, corresponds to the angular 
momentum barrier (k’ - 1) (k’ - 3) h2/8mr2 for k’ = 5 ( N = 5, E = 0). Let us compute the energy of 
the first excited state of Kg< r). For the choice S = 0.05, the exact answer is known to be 0.748125 
[ 2011. The results upto leading, second and third order using a shifted l/N expansion for x$ 
are 0.747713, 0.748127 and 0.748125 . The corresponding values using the supersymmetric partner 
potential 4’ are all 0.748125! It is clear that although excellent results are obtained with the use of the 
shifted l/N expansion for the original potential V$(r) in three dimensions, even faster convergence 
is obtained by using the supersymmetric partner potential, since we are now effectively working 
in five dimensions instead of three. Thus, SUSY has played an important role in making a very 
good expansion even better [ 771. In fact, for many applications, considerable analytic simplification 
occurs since it is sufficient to just use the leading term in the shifted 1 /N expansion for V2 (r) . Other 
examples can be found in Ref. [ 771. 

10. Pauli equation and supersymmetry 

So far, we have discussed the concept of SUSY for Schrijdinger Hamiltonians in one-dimension 
and for central potentials in higher dimensions which are essentially again one-dimensional problems. 
In this section we shall show that the concept of SUSY can also be applied to some geniune 
two-dimensional problems. In particular we show that the Pauli Hamiltonian which deals with the 
problem of a charged particle in external magnetic field can always be put in SUSY form provided the 
gyromagnetic ratio is equal to two. It is worth emphasizing here that not only the uniform magnetic 
field problem (i.e. the famous Landau level problem) but the nonuniform magnetic field problems 
can also be put in SUSY form. Using the concepts of SUSY and shape invariance we show that some 
of the nonuniform magnetic field problems can be solved analytically. 

The Pauli Hamiltonian for the motion of a charged particle in external magnetic field in two 
dimensions is given by ( ti = 2m = e = 1) 

H = (px + AxI2 + (p, + AJ2 + $7 x ALa,- 

It is easily seen that this H along with the supercharges Q’ and Q2 defined by [35,39] 

Q' = -&P, + A&, + (p, + A,bJ, 

Q2 = -$ [ (px + Ax>cx + (P, + Ay)gyl 

satisfy the N = 1 supersymmetry algebra provided the gyromagnetic ratio g is two 

(402) 

(403) 

{Q",QP}=H6"P,[H,Q-] =O; &p=l,2. (404) 
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It is interesting to note that SUSY fixes the value of g. The above Hamiltonian has an additional 
0( 2) @O( 2) symmetry coming from u, and an 0( 2) rotation in the A’, A2 plane (A’ E px + A,; A2 s 
py + A!,). Let us first consider the problem in an asymmetric gauge i.e. 

A+, y) = 0, A,(x, y) = W(y) (405) 

where W(y) is an arbitrary function of y. In this case the Pauli Hamiltonian takes the form 

H = (P, + W(Y))* + P; - W’(yh. (406) 

Since this H does not depend on x, hence the eigenfunction 6 can be factorized as 

$(X, Y) = @V(Y) (407) 

where k is the eigenvalue of the operator pX( -cc 5 k 5 co). The Schrodinger equation for G(y) 
then takes the form 

-$ + (W(Y) + k>* - W’(y>a 
1 

$(y> = E$(~) 

where u( = f 1) is the eigenvalue of the operator gZ. Thus we have reduced the problem to that 
of SUSY in one dimension with superpotential W(y) + k where W(y) must be independent of k. 

This constraint on W(y) strongly restricts the allowed forms of shape invariant W(y) for which 
the spectrum can be written down algebraically. In particular from Table 4.1 we find that the only 
allowed forms are (i) W(y) = w,y + cl (ii) W(y) = atanhy + cl (iii) W(y) = atany + cl (iv) 
W(y) = cl - c2 exp (-y) for which W(y) can be written in terms of simple functions and for which 
the spectrum can be written down algebraically [202,101]. In particular when 

W(Y) = @cY + Cl (409) 

which corresponds to the uniform magnetic field, then the energy eigenvalues known as Landau levels 
are given by 

E,=(2n+l+a)w,; n=0,1,2,... (410) 

Note that the ground state and all excited states are infinite-fold degenerate since E,, does not depend 
on k which assumes a continuous sequence of value (--00 5 k 5 co). 

The magnetic field corresponding to the other choices of W are (ii) B = -asech*y (iii)B = 

--a set* y ( 7 < y 5 T ) (iv) B = +c2 exp ( -y ) and as mentioned above, all these problems can be 
solved algebrically by using the results of Section 4. 

Let us now consider the same problem in the symmetric gauge. We choose 

A, = ocyf(p) 9 A,, = -w,xf(p) (411) 

where p* = x2 + y* and o, is a constant. The corresponding magnetic field B, is then given by 

B, (~3 Y) = &A, - &Ax = -2wf(p) - wG’(d. (412) 

In this case the Hamiltonian (402) can be shown to take the form 

(413) 
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where L, is the z-component of the orbital angular momentum operator. Clearly the corresponding 
Schrodinger problem can be solved in the cylindrical coordinates p, 4. In this case, the eigenfunction 
$( p, 4) can be factorized as 

ccl(~, 4) = R(p)e’“‘Vfi (414) 

where m = 0, f 1, f2, . . . is the eigenvalue of L,. In this case the Schriidinger equation for R(p) 
takes the form 

--$ + wzp2f2 - 2wcfm - (2wJ + w,Pf’(P))u+ 
?n2 - l/4 

p2 1 R(P) 

= -WP) (415) 

where a( = &l) is the eigenvalue of the operator crZ. On comparing with Table 4.1, it is easily 
checked that there is only one shape invariant potential (f(p) = 1) for which the spectrum can 
be written down algebraically. This case again corresponds to the famous Landau level problem i.e. 
it corresponds to the motion of a charged particle in the x - y plane and subjected to a uniform 
magnetic field (in the symmetric gauge) in the z-direction. The energy eigenvalues are 

E,,=2(n+m+~m~)w,; n=0,1,2,... (416) 

so that all the states are again infinite-fold degenerate. It is worth noting that the nonuniform magnetic 
fields can also give this equi-spaced spectrum [203]. However, they do so only for one particular 
value of m while for other values of m, the spectrum is in general not equi-spaced. 

The fact that in this example there are infinite number of degenerate ground states with zero energy 
can be understood from the Aharonov-Casher theorem [ 204 J which states that if the total flux defined 
by @ = J B, dxdy = n + ~(0 < E < 1) then there are precisely n - 1 zero energy states. Note that in 
our case @ is infinite. 

11. Supersymmetry and the Dirac equation 

There have been many applications of SUSY QM in the context of the Dirac equation. In view of 
the limitations of space, we shall concentrate on only a few of these applications [ 1001. In particular, 
we discuss the supersymmetric structure of the Dirac Hamiltonian (HD) and show how the methods 
used to obtain analytical solutions of the Schrodinger equation can be extended to the Dirac case. 
First of all, we consider the Dirac equation in 1 + 1 dimensions with Lorentz scalar potential $J( x) . 
We show that whenever the one-dimensional Schrodinger equation is analytically solvable for a 
potential V(x), then there always exists a corresponding Dirac scalar potential problem which is also 
analytically solvable [ 1011. It turns out that, on the one hand, $(x) is essentially the superpotential 
of the Schrodinger problem and on the other hand, it can be looked upon as the kink solution of a 
scalar field theory in l+l dimensions. Next we discuss the celebrated problem of the Dirac particle 
in a Coulomb field [ 1031 and show that its eigenvalues and eigenfunctions can be simply obtained by 
using the concept of SUSY and shape invariance as developed in Sections 2 and 4. We also discuss 
the problem of the Dirac equation in an external magnetic field in two dimensions and show that 
there is always a supersymmetry in the problem in the massless case. We also classify a number 
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of magnetic field problems whose solutions can be algebraically obtained by using the concepts of 
SUSY and shape invariance [ 1011. In addition, we show that the Euclidean Dirac operator in four 
dimensions, in the background of gauge fields, can always be cast in the language of SUSY QM. 
Finally, we discuss the path integral formulation of the fermion propagator in an external field and 
show how the previously known results for the constant external field can be very easily obtained by 
using the ideas of SUSY [ 1011. 

11 .I. Dirac equation with Lorentz scalar potential 

The Dirac Lagrangian in 1 + 1 dimensions with a Lorentz scalar potential 4(x) is given by 

.C = iJy”a,$ - (I;@$. (417) 

The scalar potential 4(x) can be looked upon as the 
to the scalar field Lagrangian 

static, finite energy, kink solution corresponding 

(418) 

number 
Further, 

Such models have proved quite useful in the context of the phenomenon of fermion 
fractionalization [205-2071 which has been seen in certain polymers like polyacetylene. 
a variant of this model is also relevant in the context of supersymmetric field theories in 1 + 1 
dimensions [208,209]. Note that the coupling constant in Eqs. (417) and (418) has been absorbed 
in C$ and V( 4) respectively. 

The Dirac equation following from Eq. (417) is 

Wa,$(x, t) - @(x)#(x, t) = 0. 

Let 

+(x, t) = exp(-id)@(x) 

so that the Dirac equation reduces to 

(419) 

(420) 

yOw$(x) + iy' y - am = 0. 

We choose 

yO=(T'= y :, ( 1 , y’ = i(r3 = 5 _Oi , ( ) 
so that we have the coupled equations 

A@,(x) = w(IIz(x), A+&(x) = @t(x), 

where 

A= A+ = -$ + 4(x). 

(421) 

(422) 

(423) 

(424) 
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We can now easily decouple these equations. We get 

At A$, = w2+, , AAte = w2e2. (425) 

On comparing with the formalism of Section 2, we see that there is a supersymmetry in the prob- 
lem and 4(x) is just the superpotential of the Schrodinger formalism. Further #,1 and ti2 are the 
eigenfunctions of the Hamiltonians H- E AfA and H, = AAt respectively with the corresponding 
potentials being V, (x) = +2(x) 7 4’ (x) . The spectrum of the two Hamiltonians is thus degenerate 
except that H_ (H+) has an extra state at zero energy so long as 4(x t *too) have opposite signs 
and 4(x --f +oc) > 0( < 0). Using the results of the Sections 2 and 4 we then conclude that for 
every SIP given in Table 4.1 there exists an analytically solvable Dirac problem with the correspond- 
ing scalar potential 4(x) being the superpotential of the Schriidinger problem. In particular, using 
the reflectionless superpotential given by 

W(X) = ntanhx (426) 

one can immediately construct perfectly transparent Dirac potentials with IZ bound states [ 2101. 
Further, using the results for the SIP with scaling ansatz (a2 = qal) [58,59], one can also construct 
perfectly transparent Dirac potentials with an infinite number of bound states. 

11.2. Super-symmetry and the Dirac particle in a Coulomb $eld 

The Dirac equation for a charged particle in an electromagnetic field is given by (e = ti = c = 1) 

[ir’“(a, + iA,) - rn]ti = 0. (427) 

For a central field i.e. A = 0 and Ao(x, t) = V(r), this equation can be written as [ 21 l] 

where 

with C# being the Pauli matrices. For central fields, this Dirac equation can be separated in spherical 
coordinates and finally for such purposes as the computation of the energy levels one only needs to 

(428) 

(429) 

concentrate on the radial equations which are given by [ 2111 

G’(r) + y - (cy, - V)F = 0, 
kF 

F’(r) - - - (a2 + V)G = 0 (430) 
r 

where 

a1 =m+E, cz2=m-E (431) 

and Gk is the “large” component in the non-relativistic limit. Of course the radial functions Gk and 
Fk must be multiplied by the appropriate two component angular eigenfunctions to make up the full 
four-component solutions of the Dirac equation [211]. These coupled equations are in general not 
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analytically solvable; one of the few exceptions being the case of the Dirac particle in a Coulomb 
field for which 

V(r) z-5, y=ze2 (432) 

We now show that the Coulomb problem can be solved algebraically by using the ideas of SUSY 
and shape invariance. To that end, we first note that in the case of the Coulomb potential, the coupled 
equations (430) can be written in a matrix form as 

(433) 

where k is an eigenvalue of the operator -(G . L + 1) with the allowed values k = f 1, f2, f3, . . ., 

and satisfies 1 kl = J + i. Following Sukumar [ 1031, we now notice that the matrix multiplying l/y 
can be diagonalized by multiplying it by a matrix D from the left and D-l from the right where 

,-rs), s= Jiq. (434) 

On multiplying Eq. (433) from the left by the matrix D and introducing the new variable p = Er 
leads to the pair of equations 

where 

(:)=D(z) 
and 

A=d_:+r At=_?- 
dp P s’ dp 

( > ;+; P (435) 

(436) 

-;+;. (437) 

Thus we can easily decouple the equations for p and rI? thereby obtaining 

(438) 

We thus see that there is a supersymmetry in the problem and H+ are shape invariant supersymmetric 
partner potentials since 

H+(p;s,y) = H-(p;s+ l,r> +; - 
2 

(s: 1>2’ 

On comparing with the formalism of Section 4 it is then clear that in this case 

(439) 

u2=s+l, a1 =s, R(a2) = r’ _ r” 
a: a: 

(440) 
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so that the energy eigenvalues of H- are given by 

(i,z- ($) E E;-’ &al) =y2($ - (s;n)2). 
n k=2 

Thus the Coulomb bound state energy eigenvalues E,, are given by 

E,, = 

[l+ (,I ) ] 

112’ 
n=0,1,2,... 

Y” 

n2 

(441) 

(442) 

It should be noted that every eigenvalue of H- is also an eigenvalue of H+ except for the ground 
state of H_ which satisfies 

AF = 0 + i;‘,(p) = psexp (-yp/s). (443) 

Using the formalism for the SIP as developed in Section 4, one can also algebraically obtain all the 
eigenfunctions of P and e. 

Notice that the spectrum as given by Eq. (442) only depends on ]k] leading to a doublet of states 
corresponding to k = ) kl and k = -(kJ for all positive n. However, for n = 0, only the negative value 
of k is allowed and hence this is a singlet state. 

11.3. SUSY and the Dirac particle in a magnetic$eld 

Let us again consider the Dirac equation in an electromagnetic field as given by Eq. (427) but 
now consider the other case when the vector potential is nonzero but the scalar potential is zero i.e. 
A0 = 0, A $0. Now as shown by Feynman and Gell-Mann [ 2121 and Brown [ 2131, the solution 
of the four component Dirac equation in the presence of an external electromagnetic field can be 
generated from the solution of a two component relativistically invariant equation. In particular, if @ 
obeys the two component equation 

[(P+A)2+m2+(T.(B+iE)l~=((B+Ao)21CI (444) 

then the four component spinors that are solutions of the massive Dirac equation are generated from 
the two component $ via 

(o.(P+A)+B-Ao+m)$ 
lLD=((~,~~+A)+E-Ao-m), ’ > 

(445) 

Thus, in order to solve the Dirac equation, it is sufficient to solve the much simpler two-component 
Eq.(444) and then generate the corresponding Dirac solutions by the use of Eq. (445). In the special 

case when the scalar potential A0 (and hence E) vanishes, the two-component equation then has 
the canonical form of the Pauli equation describing the motion of a charged particle in an external 
magnetic field. If further, m = 0 and the motion is confined to two dimensions, then the Pauli Eq. 
(444) exactly reduces to the Eq. (402) of the last section. Further, since 

(HD)2=[~.(P+A)]2=H~a”li (446) 



354 E Cooper et al./Physics Reports 251 (1995) 267-385 

hence, there is a supersymmetry in the massless Dirac problem in external magnetic fields in two 
dimensions since Z-l;, Qi and Q2 (see Eq. (403) satisfy the SUSY algebra as given by Eq. (404). 
Clearly, this supersymmetry will also be there in two Euclidean dimensions. We can now imme- 
diately borrow all the results of the last section. In particular, it follows that if the total flux @(= 
s B, dxdy) =n + E (0 5 E < 1) then there are precisely it - 1 zero modes of the massless Dirac equation 
in two dimensions in the background of the external magnetic field B (B E B,) [204,214]. Further, 
in view of Eqs. (444) and (445) we can immediately write down the exact solution of the massless 
Dirac equation in an external magnetic field in two dimensions in all the four situations discussed in 
the last section when the gauge potential depended on only one coordinate (say y). Further using 
the results of that section, one can also algebraically obtain the exact solution of the Dirac equation 
in an uniform magnetic field in the symmetric gauge when the gauge potential depends on both x 
and y. 

Even though there is no SUSY, exact solutions of the Pauli and hence the Dirac equation are also 
possible in the massive case. On comparing the equations as given by (444) (with A0 = 0, E = 0) 
and (402) it is clear that the exact solutions in the massive case are simply obtained from the 
massless case by replacing l?’ by _?? - m*. Summarizing, we conclude that the exact solutions of the 
massive (as well as the massless) Dirac equation in external magnetic field in two dimensions can be 
obtained algebraically in case the magnetic field B(E B,) has any one of the following four forms 
(i) B = constant (ii) B = -asech*y (iii) B = -asec*y(-r/2 5 y 2 r/2) (iv) B = -c2exp(-y). 
Further, in the uniform magnetic field case, the solution can be obtained either in the asymmetric or 
in the symmetric gauge [ 202,lOll. 

11.4. SUSY and the Euclidean Dirac operator 

In the last few years there has been a renewed interest in understanding the zero modes and the 
complete energy spectrum of the square of the Dirac operator for a Euclidean massless fermionic 
theory interacting with the background gauge fields [25,28,215,216]. Let us first show that there is 
always a supersymmetry in the problem of the Euclidean massless Dirac operator in the background 
of the gauge fields. On defining 

(447) 

where 

D, = 8, +iA,, 

one finds that the Dirac operator can be written as 

(448) 

Y~D, = Q+ + Q-. 

Let us take the following representation of the Euclidean y matrices 

(450) 

where ci are the usual Pauli matrices. It is then easily seen that the operators Q,. Q_ and H - 
-( y,D,)* satisfy the usual N = 1 SUSY algebra 

H=-(y,D,)*={Q+,Q-}, [f&Q+1 =O= [KQ-I. (451) 
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This supersymmetry is popularly known as chiral supersymmetry. In view of the above representation 
of the y matrices, we find 

Y$, = 
0 

-iDO+o.D 
iDo+;*“) = (;+ ;> 

and hence 

-H = (ypDJ2 = D,D, + 
CT* (B+E) 0 

0 cr. (B-E) > 

= (L:+ SL) 

(452) 

(453) 

where we have used the convention 

& = ?A, - &ACL, Bi = ;EijkFjk, Ei = Foi. (454) 

Using the techniques of Sections 2 and 4, one can algebraically obtain the eigenvalues and the 
eigenfunctions of H for few special cases [ 1011. Further, once we have an eigenfunction of H with 
a nonzero eigenvalue El, then one can easily obtain the eigenfunctions C& of ‘ycLD, with eigenvalues 
&( El ) ‘I* by the construction 

& = (Q, f (El) “*M. (455) 

Finally, it is worth pointing out that in case the gauge potential A, has the special form 

A, = f,,&x (456) 

where the constant 4 by 4 matrix fPV has the properties: 

(457) 

then there exists another breakup of the Dirac operator y,D, which leads to the so called complex 
supersymmetry [ 1011. 

11.5. Path integral formulation of the fermion propagator 

We have seen that there is always a supersymmetry associated with the Euclidean Dirac operator 
in four as well as two dimensions in the background of the gauge fields. This SUSY was first 
successfully exploited in the context of the study of the chiral anomalies [ 2171. In a nut shell, the 
solvability of the Dirac operator is related to the ability to integrate the path integral. The quantities 
one wishes to calculate are the Green’s functions 

G(x, X; 7) = (Xle-H7/X’) IX+ (458) 

and 

G,(x,x;r) = (xITr(yge-H’)Ix’)I,,/. (459) 

By using Schwinger’s proper time formalism we can determine S(x, X; A) from G. Similarly, the 
index Zs which in the limit r = 0 is related to the chiral anomaly, is just the spatial integral over Gs. 
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Here we would like to show that by introducing the fermionic degrees of freedom, the path 
integral for the Dirac operator, which is initially a path ordered integral gets reduced to an ordinary 
path integral. This trick was first introduced by Rajeev [218] who was interested in reformulating 
quantum electrodynamics as a supersymmetric theory of loops. Once we introduce the fermionic 
variables then G( G,) is determined by choosing the antiperiodic (periodic) boundary conditions for 
the fermions. By integrating over the fermionic degrees of freedom, a purely bosonic path integral is 
then obtained. For the case of a constant external field strength F,,, the bosonic path integral is a 
Gaussian, which allows one to trivially obtain G and G5. 

Let us consider the square of the Dirac operator i.e. (y+uOP)‘. It can also be written as 

H = (P + A)2 - $T~“F~~ (460) 

where 

(7 PJ = ~[y’.Y~l. (461) 

If we do not introduce auxiliary fermions then the related matrix valued Lagrangian would be 

L(x, k) = $k,k, - iA,i:, + ~up”F~,, (462) 

and we would obtain for Feynman’s path integral representation 

(xle-HT(x) = 
s 

Dx,(r)Pexp[ - ’ d#L(x, i) ] 
s 
0 

(463) 

where P denotes path ordering. Now, taking analogy from SUSY quantum mechanics, it has been 

noticed [ 218,101] that one can introduce the Grassman variables +P via 

&L = $9 {$,7 A> = 6,V. (464) 

Then H can be written as 

H = (P + A)2 + ;&F&v (465) 

and hence the Lagrangian now becomes 

L,, = ik,k, - iA,kp - itip (&6,, + Fp,)~v 

which is invariant under the SUSY transformations 

6% = -it@,; St& = E_$. 

We now obtain for the path integral 

(466) 

(467) 

(468) 
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where we impose antiperiodic boundary conditions on the fermion at 0 and 7. Since the fermionic path 
integral is quadratic, we can perform the functional integral over the fermionic degrees of freedom 
exactly for arbitrary Fpy . 

The result of the fermionic path integral is 

Det1’2(i&8,, + F,,) 

Det/‘/*( i&6,,) ’ 
(469) 

where the prime denotes the omission of the zero mode. To evaluate the determinant one puts Fpv in 
skew diagonal form: 

and imposes either periodic or antiperiodic boundary conditions. One obtains for the fermion deter- 
minant using antiperiodic boundary conditions relevant for G 

n cash - 
i 

t j Xid7. 

0 

(471) 

and for the fermion determinant with periodic boundary conditions relevant for the determination of 
the index: 

(472) 

Thus for any arbitrary external field one can explicitly perform the fermionic path integral and is 
left with the purely bosonic path integral which, for example, could by performed numerically by 
Monte Carlo techniques. For the particular case of a constant external field one can further explicitly 
perform the resulting bosonic path integral, When 

A, = -;Fp,x,, (473) 

with Fp,, being a constant matrix, one obtains for the remaining bosonic path integral: 

(474) 

G and G5 are easy to calculate in two and four Euclidean dimensions for the constant external field 
case [ 1011 using this method. In two dimensions, where only Fol = B exists one has that (xi = B) 

[loll 

G= Btanh(Br); G5 = B = igp,,Fp,. (475) 

It is worth remarking here that the same result has been obtained with more difficulty by Akhoury 
and Comtet [ 161. In four dimensions one has a simpler derivation of the result of Schwinger [ 2191 
rewritten in Euclidean space. One finds that 
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x, = [F + (F2 - G2)1/2]1/2, x2 = [F - (F2 - G2)1/2]1/2, 

where 

F = ~F,,F,,, G = $F,,F;, 

so that 

rI Xi = $F,,F;,. 

(476) 

(477) 

From this we obtain that: 

Xi7 
2 cash - 

G(x,x;r) = F,,F:,n 2 , G(x,x;~) = tF,wF;v. 
i=l sinh y 

(478) 

Once one has obtained the Green’s function it is easy to reconstruct the effective action which 
allows one to obtain the rate of pair production from a strong external electric field. The effective 
action is given by 

m 

x?ff = s fix L(x) 3 L(x) = s ~ss-‘~--“‘*~G( s). (479) 
c 

12. Singular superpotentials 

So far, we have only considered nonsingular superpotentials W(x) which give rise to the super- 
symmetric partner potentials V, (x) and V~(X). This choice of the superpotential was based on the 
ground state wave function $0 (x) of V, (x) by the relation W(x) = -I,&(x)/$~(x). In this section, 
we describe a general procedure for constructing all possible superpotentials which yield a given 
potential v(x) upto an additive constant [ 1141. This general procedure is based on any arbitrary 
solution 4(x) of the SchrBdinger equation for v(x), rather than just the ground state wave function. 
We shall see that singular superpotentials are given by W, = -c$‘/c$ and the singularities are lo- 
cated at the zeros of excited wave functions. Such singularities produce interesting properties for the 
potentials Vrc6, (x) and V 2c+j (x) obtained via the Riccati equations Vlc4, (x) = v(x) - W’(x) and 
V2($) (x) = w(x) + W’ (x) . Singular superpotentials are responsible for negative energy eigenstates 
for Vlc,+, (x) and often give rise to a breakdown of the degeneracy of energy levels for VI(~) (x) and 
I$(+) (x) [ 110,112,113,220,114]. Another interesting physical phenomenon occurs if one considers 
a singular superpotential resulting from a solution 4(x) for an energy E in the classical energy 
continuum. [ 1141 The isospectral family of VI (4) (x) is then found to have bound states (normalised 
eigenfunctions) at energy E. Thus SUSY QM provides a systematic procedure for generating po- 
tentials possessing the purely quantum mechanical phenomenon of bound states in the continuum 
[116,117]. 
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12.1. General formalism, negative energy states and breakdown of the degeneracy theorem 

Given any nonsingular potential 8(x) with eigenfunctions & (x) and eigenvalues E,( n = 0, 1,2, . . .) , 
let us now enquire how one can find the most general superpotential W(x) which will give v(x) 
upto an additive constant [ 1141. To answer this question consider the Schriidinger equation for e(x) : 

-cp” + V(x)#J = EC/l (480) 

where E is a constant energy to be chosen later. For convenience, and without loss of generality, we 
will always choose a solution 4(x) of Eq. (480) which vanishes at x = -oo. Note that whenever E 

corresponds to one of the eigenvalues E,, the solution 4(x) is the eigenfunction &(x). If one defines 
the quantity W, = -$‘/qS and takes it to be the superpotential, then clearly the partner potentials 

generated by W, are 

(481) 

where we have used Eq. (480) for the last step. The eigenvalues of yCd, are therefore given by 

E nc4) = E, - E. (482) 

One usually takes E to be the ground state energy Eo and C#J to be the ground state wave function 
&J(X), which makes Eocoj = 0 and gives the familiar case of unbroken SUSY. With this choice, the 
superpotential W,(x) = -I&/& is nonsingular, since fiO(x) is normalizable and has no zeros. The 
partner potential $4) has no eigenstate at zero energy since A&,(x) = [ d/dx + W,(x) ] e,,(x) = 0; 
however, the remaining eigenvalues of V&+) are degenerate with those of KC@,. 

Let us now consider what happens for other choices of E, both below and above the ground state 
energy Eo. For E < EO, the solution 4(x) has no nodes, and has the same sign for the entire range 
-oc < x < +oo. The corresponding superpotential W4(x) is nonsingular. Hence the eigenvalue 
spectra of VIc4, and I$$, are completely degenerate and the energy eigenvalues are given by Eq. 
(482). In particular, Eocdj = E0 - E is positive. Here, W+ has the same sign at z = foe, and we have 
the well-studied case of broken SUSY [lo]. 

If the constant E is chosen in the range Eo < E < El, then the solution 4(x) of Eq. (482) will 
have only one node, say at the point x = x,. Near the point x = x,, the node of 4(x) makes the 

superpotential W(x) singular 

4 = a(x - x,), 4’ = a, W(x) = -(x -x$)-l, 

and the partner potentials have the behavior [using Eq. (481) ] 

(483) 

Vi(& = 0, VQ, =2(x - x,)? (484) 

It is well-known [221-2231 that for any singular potential V(x) = A(x - x$)-~, the behavior of 
the wave function at x = x, is governed by the value of A. For values A > i, the potential V(x) has a 
“strong” singularity which forces @(x, ) = 0 and the range of x is effectively broken into two disjoint 
pieces x < x, and x > x, with no communication between them. For -f < A < a, the potential has 
a singularity of “intermediate” strength. It is not strong enough to make $(x,) vanish and in fact the 
two regions x < xs and x > x, do communicate and one has the full range -cc < x < +oc. Here, in 
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Table 12.1 

Choice of the constant E and the corresponding solution 4(x) in Eq. (480) determines the choice of the superpotential 
W, which produces any given non-singular potential P(x) [ Eq. (48 1) 1. The table shows how certain choices of E give 

rise to singular superpotentials, negative energy eigenstates and a breakdown of the degeneracy theorem. We have taken 
4(x = --03) = 0 for convenience [ 1141. 

Choice of 

6, 4(x) 

Superpotential 

W,(x) 

Negative energy 

states for 

Vw, (1) 

Zero energy 
state for 

v,,g, (x) 

Degeneracy of 
spectra for V*(4) (x) 

and b)(x) 

E < En 
[ 4 (x) has no nodes] 

E = El) 

L@(x) = $0(x) 1 

EC, < E < El 
[4(x) has one node] 

E = El 

[@J(x) =+1(x)1 

El < E < E2 
[ r$( x) has two nodes] 

non-singular 

non-singular 

singular [where 
4 (x) has node] 

singular [where 
+I (x) has node] 

singular [where 
4(x) has nodes] 

none 

none 

one, at 

Eo(+p) = Eo - l 

one, at 

Eo(I) = Eo - El 

two, at 

Eoc+, = Eo - E, 
E I(+) = EI - l 

no yes 
[broken SUSY] 

yes 
[ Eoco, = 01 

no 

yes except for EOCO) = 0 
[unbroken SUSY ] 

no 

yes 
[EI(I, = 01 

no [partial degeneracy 
for symmetric 

potentials] 

no no 

principle, one can have singular wave functions which require self-adjoint extensions [ 2211; in what 
follows, we will deal with regular solutions. Finally, for h < -i, the Hamiltonian is unbounded from 
below. 

From Eq. (484)) it is clear that V&b, has a “strong” singularity which makes J,!I(x,) = 0. Thus, the 
problem of finding the eigenstates of V&4, is really two separate problems; one in the range -oo < x, 
and the other in the range x, < x < +co. Clearly, this is very different from the range of Vlc~, which 
is the whole real axis --oo < x < +co. Hence, in general, the degeneracy theorem obtained from 

SUSY for the spectra of V&d, and &cd1 is not valid. The above discussion can be readily extended 
to all values of the constant E - the only difference being the number of poles present. A summary 
of results is given in Table 12.1. 

So far we have considered superpotentials (both nonsingular and singular) which give rise to a 
nonsingular potential V, (4). However, if the potential V(x) itself has singularities, then so must all 
superpotentials which produce it. Consider the case of a simple pole singularity at x = x0. Then, 

near x = x0, the singular superpotential W(x) = g( x - x0) -I gives the following behavior to the 
corresponding partner potentials: 

g(g+ 1) 
K(4) = (x _ xo)2’ 

dg - 1) 
%Tb) = (x _ xo)2 * (485) 

Then clearly, for g > 5 or g < -i, both Vi($) and V&4) have “strong” singularities and both have 
two disjoint regions x < x0 and x < x0. Here, one expects degenerate energy levels (corresponding 
to broken or unbroken SUSY). Similarly, for -i < g < +i, both V’,(4) and V2(41 have “intermediate” 
strength singularities and the whole region --00 < x < +oo is valid for both. Here again, one obtains 
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degeneracy. However, for the two regions -5 < g < -i and i < g < $ only one of the partner 
potentials has a “strong” singularity, whereas the other has a singularity of “intermediate” strength. 
Therefore, the two potentials have different Hilbert spaces and, in general, degeneracy is not there. 
The above discussion is borne out by the work of Jevicki and Rodrigues [ 1 lo] who consider a 
superpotential of the form W(X) = g/x - x. 

The general discussion of singular superpotentials, negative energy states and breakdown of the 
degeneracy theorem is best illustrated with some specific examples. 

Consider the harmonic oscillator potential V(X) = x2. The energy eigenvalues are En = 2n and the 
first few eigenstates are 

(486) 

Using the solution $ = +o(x), one gets the usual nonsingular superpotential W. = -$o//+o = X, 
leading to the following partner potentials and eigenvalues: 

V l(0) =x2 - 1, ho, =x2+1, E;$) = 2n, 

E$) = 2n + 2, n=0,1,2,... (487) 

This is standard unbroken SUSY. The harmonic oscillator potential can also be obtained if one starts 
from the solution 4 = fiI (x). One gets the singular superpotential WI = -r,bi/#, = x - l/x. It has a 
pole at x = 0 and is a special case of the form discussed in Ref. [ 1 lo]. The partner potentials are 

2 
V l(l) = x2 - 3, v*(,)=x*+--1, 

X2 
(488) 

and both are exactly solvable [54,44]. The two eigenvalue spectra are 

EL;/) = 2n - 2, Ej;;j, =4n+4, n=0,1,2 ,... (489) 

There occurs a negative energy state in Kc ,) at E,$,‘i) = -2. Th is is expected since we chose 4 to be 

the first excited state and E,, 1) - , (I) - 0 which pushes the ground state to a negative energy. Proceeding 
along the same lines, we can get the harmonic oscillator potential using yet another superpotential. 
Taking 4 = &(x), one gets W2 = -I+$/& = x - 4x/( 2x2 - 1)) which has poles at x = f l/a. The 
corresponding potentials are 

V l(2) = x2 - 5, b(2) = 
x2_3+ Wx2+l) 

(2x2 - 1)2’ 
(490) 

The eigenvalue spectrum of K(2) is E,$) = 2n - 4 indicating two negative energy states at -4 and 
-2, which was anticipated. The potential V2(2) is not analytically solvable. The “strong” singularities 
at x = &l/v% break the x-axis into three disjoint regions --oo < x < -lIfi,-l/Jz < x < 
l/v&, l/a < x < +cc and the degeneracy theorem breaks down. 

In summary, the potentials vco, and V2(o) give a realization of SUSY QM with a non-degenerate 
zero energy ground state and pairing of excited states. For the case of Vl( ,) and V*(r) the eigenvalues 
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Fig. 12.1. The harmonic oscillator potential Vl( 1) and its partner potential &(I) as given by Eq. (488). These potentials arise 
from a singular superpotential WI = x - l/x corresponding to the choice C$ = $1 (x), E = El in Table 12.1 . The energy 
levels for both potentials are shown. Notice the negative energy state of VI(~) at energy -2, and the partial degeneracy of 
the eigenvalue spectra coming from the even parity of the potentials [ 1141. 

are given by Eq. (489). There is partial degeneracy of the spectrum [see Fig, 12.11 due to the fact 
that the potentials are symmetric. The states which are missing in Vzclj are the even parity states, 
since the 2/x2 barrier requires the vanishing of wave functions at x = 0. Finally, for the partner 
potentials V,(2) and V*(2), degeneracy is completely absent. 

Our second example is the Morse potential V(x) = A2 + B2evznx - B( a + 2A)e-““. The superpo- 
tential based on the ground state is W,(x) = A - Bedax. For concreteness, we shall take A = 4, LY = 1 
and B = 1. The corresponding energy eigenvalues are E,,C0l - (I) - 16-(4-n)*; there are four bound states 
with eigenvalues 0,7,12 and 15 and a continuum starting 
are [54] 

$0(x) N e 
-(4x+C”) 

, $1(x> we 
-(3x+e-“) (7 _ 2e-“). 

The supersymmetric partner potentials constructed from 
4 - e-’ are 

V 1coj = 16 - 9e-” + e-“, Vzcoj = 16 - 7eWX + e-*‘. 

The spectrum of h(o) is identical to that of V~(O), except 

above 16. The two lowest eigenfunctions 

(491) 

the nonsingular superpotential W,(x) = 

that there is no state at 
alternative singular superpotential WI (x) which also yields the Morse potential is 

I/J; 

wl(x)=-F= 

21 - 15e-” + 2e-2X 

’ 1 7 - 2e-” 

There is a simple pole at X, = - ln( 3.5). The partner potentials are 

VrCl, = 9 - 9e-” + e-2X, 

%(l) = 

441 - 567e-” + 281e*” - 56ee3” + 4e-4X 

(7 - 2e-“)* 

(492) 

zero energy. An 

(493) 

(494) 
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-3 -2 -1 0 1 2 3 

x 

Fig. 12.2. The Morse and its supersymmetric partner potential [eq. (494)] coming from the singular superpotential WI 
given in Eq. (493). The singularity at x = - ln3.5 breaks P&I) into two disjoint pieces, and the eigenvalue spectra have no 

degeneracy [ 1141. 

By construction, the potential Kc i) is the Morse potential and V&l) has a singularly at x, = - ln( 3.5). 
Expanding V& 1) about the singular point gives V2c1j N 2/(x - x,)~, which requires the wave function 
to vanish at x = x,. This effectively breaks the potential and the real axis into two parts: V&i) (left) 
for -co < x < x, and V2(ij (right) for x, < x < +oo. The potentials and their eigenstates are 
plotted in Fig. 12.2. The potential &(i) has energy levels located at -7, 0, 5, 8 and a continuum 
above 9. As expected from Table 12.1, there is a negative energy state at -7. We have calculated the 
energy levels of V2(ij (right) and V 2c1j (left) numerically. They are Elfi (right) = 6.08, 8.65 with a 

(2) continuum above 9 and EC,, ( left) = 22.96, 50.69, 82.16, 116.8,. . . The potential V2(,) (left) has an 
infinite number of bound states and as is obvious from the spectra, the degeneracy between V2(ij and 
Vlc Ij is completely broken by the “strong” singularity in Wi (x). Note that since the Morse potential 
is asymmetric, no partial degeneracy remains. This is unlike our first example (harmonic oscillator) 
which had symmetric potentials and V211j and VI ( 1j had a partial degeneracy. 

Our last example is the reflectionless potential V(x) = A2 - A(A + l)sech2x. The motivation for 
considering this example is to make contact with singular superpotentials considered by Casahorran 
and Nam [ 1121. The ground state wave function is given by &, = (sechx) A. The nonsingular 
superpotential W0 = A tanhx comes from tiO. Using the property of shape invariance [ 54,441 one 
readily obtains Q, (x) = tanh x( sechx) A-’ as the wave function for the first excited state. If one takes 
4 = $, , the resulting superpotential is W, = -#I,’ /I& = -2Acosech2x + (A - 1) coth x, which agrees 
with Eq. (3.14) of Ref. [ 1121. The energy eigenvalues for vcO, are EL& = A2-(A-n)2 and one has 

unbroken SUSY. The potentials generated by Wi (x) are Vlcl) = (A - 1)2 - A( A + 1) sech2x, V&1 1 = 
(A - 1 )2 - A(A - l)sech2x + 2cosech2x. These potentials are shape invariant [54,44] and their 
eigenvalues are E::,‘, = (A - l)* - (A - IZ)~,E,,(,, - (2) - (A - 1) 2 - (A - 2n - 3)2, indicating partial 
degeneracy, as expected for symmetric potentials. Similarly, our previous experience indicates that 
the partner potentials constructed from W,(x) will have no degeneracy. Thus, we have not only 
reproduced some families of singular superpotentials previously considered in the literature, but given 
the general method to construct new ones. 
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In conclusion, we have shown how excited state wave functions can be used to construct singular 
super-potentials in SUSY QM. Our method provides a complete and unified picture of the origin 
of negative energy states and the presence or absence of degeneracy. Although our technique is 
perfectly general, our examples were taken from the class of shape invariant potentials, since these 
are analytically solvable. 

12.2. Bound states in the continuum 

In 1929, Von Neumann and Wigner [ 1161 realized that it was possible to construct potentials 
which have quantum mechanical bound states embedded in the classical energy continuum (BICs). 
Further developments, by many authors [ 117,224-2261 have produced more examples and a better 
understanding of the kind of potential that can have such bound states, although there is not as yet 
a fully systematic approach. These authors have also suggested possible applications to atoms and 
molecules. Capasso et al. [227] have recently reported direct evidence for BICs by constructing 
suitable potentials using semiconductor heterostructures grown by molecular beam epitaxy. Finally, it 
is interesting to note that BICs have found their way into a recently written text [ 1181. 

In this subsection, we show how one can start from a potential with a continuum of energy 
eigenstates, and use the methods of SUSY QM to generate families of potentials with bound states in 
the continuum [ BICs] [ 1151. Basically, one is using the technique of generating isospectral potentials 
(discussed in Section 7) but this time starting from states in the continuum. The method preserves 
the spectrum of the original potential except it adds these discrete BICs at selected energies. As 
illustrative examples, we compute and graph potentials which have bound states in the continuum 
starting from a null potential representing a free particle and the Coulomb potential. 

(a) One parameter family of BICs. Consider any spherically symmetric potential V(r) which 
vanishes as r + 00. The radial s-wave Schrodinger equation for the reduced wave function u(r) (in 
units where tZ = 2m = 1) is 

--u” + V(r)u(r) = l%(r), (495) 

where we have scaled the energy and radial variables such that all quantities are dimensionless. Eq. 
(495) has a classical continuum of positive energy solutions which are clearly not normalizable. 

As we have seen in Section 7, the Darboux [64] procedure for deleting and then reinstating the 
ground state uO( r) of a potential V(r), generates a family of potentials q( r; A) which have the same 
eigenvalues as V(r). These isospectral potentials are labeled by a real parameter h in the ranges 
A > 0 or h < - 1. The isospectral potential P(r; A) is given in terms of the original potential V(r) 
and the original ground state wave function uO( r) by [ 68,70,72] 

4u(&J 
Q(r;A) = V(r) - 2[ln(Z0+ A)]“= V(r) - - 

21104 

&+A + (z0+A1*’ 

where 

lo(r) E /ui(r’)dr’. (497) 
J 
0 
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Except in this section, uo was taken to be the nodeless, normalizable ground state wave function of 
the starting potential V(r). However, it is easy to generalize the above equations to the case where 
uo(r) is any solution of Eq. (495) with arbitrary energy Eo. If uo (r) has nodes, this leads to singular 
superpotentials and to singularities in the partner potential V,(r) . However, when the original state at 
EO is re-inserted, the resulting family of potentials p( r; A) is free of singularities [ 1141. Our results 
are best summarized in the following statement: 

Theorem: Let uo( r) and ul (r) be any two nonsingular solutions of the Schrodinger equation for 
the potential V(r) corresponding to arbitrarily selected energies E. and El respectively. Construct a 
new potential p( r; A) as prescribed by Eq. (496). Then, the two functions 

u0W 
iio(r; A) = - 

ZOSA’ 

and 

a, (r; A) = (-5 - Eo)u, + iioW(uo, ul), (499) 

[where W denotes the Wronskian, W( uo, u1 ) = uoui - u1 u;] are solutions of the Schrodinger equation 
for the new potential p( r; A) corresponding to the same energies E. and El. 

While the new potential in Eq. (496) and the new wave functions in Eq. (498) were originally 
inspired by SUSY QM, the easiest proof of the above theorem is by direct substitution. One simply 
computes -6:’ + i/( r; A)& (i=O,l), with the wave functions iii given in the theorem. After straight- 
forward but tedious algebraic manipulations, one gets EiGi, thus establishing the theorem. The algebra 
is considerably simplified by using the following identity for the Wronskian of two solutions of the 

Schrodinger equation: 

$Wo> ~1) = (Eo - 4)uoul. (500) 

Let us now take uo to be a scattering solution at a positive energy E. = k2 of a potential V(r) 

which vanishes at r=cc. Taking uo (r = 0) = 0 satisfies one of the required boundary conditions, but 
clearly uo oscillates as r --t cc and has an amplitude which does not decrease. Consequently, the 
integral Zo( r) in Eq. (497) now grows like Y at large r and ii0 is now square integrable for A > 0, 

while the original wave function uo was not. Negative values of A are no longer allowed. Therefore, 
we see that all the potentials v( r; A) have a BIC with energy Eo. Note from Eq. (498) that a0 has 
the same zeros as the original ug. At zeros of ~0, P( r; A) and V(r) are equal. All the other oscillatory 
solutions of the Schrodinger equation with V(r) get transformed into oscillatory solutions to the new 
Schrodinger equation with Q( r; A) with the same energy. In particular, note that fi, (r; A) remains a 
non-normalizable scattering solution of the corresponding Schrodinger equation. 

We note that the new potential p( r; A) in Eq. (496) and the BIC at energy E. are formed using 
the corresponding wave function uo(r) . Any other state, say u1 (r), is transformed into a solution of 
the new Schrodinger equation by the operation given in Eq. (499) which involves both u. and ui. 
The central column of Table 12.2 gives a convenient overview of the relationship of the potentials V 
and v and the solutions of the corresponding Schrodinger equations. 
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Table 12.2 
One and two parameter families of potentials with bound states in the continuum. These families are generated by applying 
the theorem described in the text to scattering states uo and u1 at energies EO and EL in succession [ 1151. 

Potentials 

V(r) Q = V - 2[ln(Zo + A)]” 6=5i-2[ln(il+AI]” 

Wave functions 

El 
1 

UI LI = (EI - Eo)w + iioW(uo,ul) 
:. 
Ul = -& 

f, +A1 

Eo 
1 

uo lie = -ug 
lo + A 

bo=(Eo-El)iio+&W(a,,Lir~) 

We now give two examples to explicitly illustrate how one applies the above procedure to obtain 
potentials possessing one BIC. 

Example I: Free particle on the half line. Consider a free particle on the half line (V G 0 

for 0 2 r < 00). We choose ~0 = sin kr, the spherical wave solution, corresponding to energy 
E0 = k2 > 0, which vanishes at Y = 0. The integral I0 given in Eq. (497) becomes 

I0 = [2kr - sin(2kr)]/(4k). 

We observe that Z, -+ r/2 as r + 03. 

(501) 

The potential family Q, defined in Eq. (496) becomes 

V(r;A) = 
32k2 sin” kr 8k2 sin(2kr) 

- D2 (502) 
0 Do 

with 

DO( r; A) = 2kr - sin(2kr) + 4kA. 

9 has a BIC at energy E0 = k2 with wave function 

(503) 

ii0 ( A) = 4k sin kr/ Do. (504) 

For special values of the parameters k and h, the potential Q and its BIC wave functions are shown 
in Figs. 12.3a and 12.3b. The original null potential has now become an oscillatory potential which 
asymptotically has a 1 lr envelope. The new wave function at E0 = k2 also has an additional damping 
factor of 1 lr which makes it square integrable. As u. appears in the numerator of v’, Eq. (496), 
every node of 2, is associated with a node of Q but not every node of 9 produces a node of a,. The 
value of the eigenenergy E. is clearly above the asymptotic value, zero, of the potential. Evidently, 
the many oscillations of this potential, none of them able to hold a bound state, conspire in such a 
way as to keep the particle trapped. 

The parameter A which appears in the denominator function Do( r; A) plays the role of a damping 
distance; its magnitude indicates the value of r at which the monotonically growing integral 20 
becomes a significant damping factor, both for the new potential and for the new wave function. This 
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Fig. 12.3. Potentials P(r) (solid lines) possessing one bound state in the continuum (BE) obtained by starting from a 
free particle and constructing a one-parameter (A) family. The BIC wave function iio( r) is at energy E = 1, and is shown 
by the dashed line. Fig. (a) corresponds to A = 0.5 and fig. (b) corresponds to a much larger value A = 5 . 

is illustrated graphically in Figs. 12.3a and 12.3b which are drawn for very different values of A. 
[Note that the wave functions shown in the figures are not normalized]. The parameter A must be 
restricted to values greater than zero in order to avoid infinities in 9 and in the wave functions. In 
the limit A + co, ? becomes identical to V. 

Example 2: Coulomb potential. Here V = Z/Y, and the unbound, reduced 1 = 0 wave function 
satisfies the Schrodinger equation Eq. (495), which can be written in standard form 

(505) 

with p = &!?r and 75 = Z/2&. 
The solutions involve confluent hypergeometric functions which in the asymptotic limit approach 

sine waves phase-shifted by a logarithmic term. Useful expressions for these solutions in the regions 
near and far from the origin are available in the literature [ 228,229]. Stillinger and Herrick [ 1171, 
following the method of Von Neumann and Wigner [ 1161, have constructed BIC potentials and wave 
functions for the case of the repulsive Coulomb potential. Here we use our theorem to construct a 
one-parameter family of isospectral potentials containing a BIC. The procedure is the same for both 
positive and negative Z; the only difference being in the sign of q. The formal expressions for the 
BIC potentials and wave functions have been given above, Eqs. (496) and (498), in terms of uo. 

The positive energy solution of Eq. (505) can be written in the usual form [ 228,229,117] as the 

real function 

u0(p> = C0(7?>e +M( 1 - i*, 2,2ip), (506) 

where 

Co(q) = (e-““‘2)]r(1 +ifj)( (507) 

and M(a, b; z) is Kummer’s function. Using tabulated expressions for the Coulomb wave functions 
[229] and doing the integral for lo numerically, we have obtained the BIC wave functions for 
representative values of A. The corresponding one-parameter family of potentials obtained by the 
SUSY procedure is given in Eq. (496) with V, = Z/r. 
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2 = -2 

k = 0.5 

A = 0.25 

P 

(b) 

Fig. 12.4. (a) A potential (solid line) with one BIC at energy E = 0.25 obtained by starting from an attractive Coulomb 
potential (dotted line). (b) A plot of the wave functions corresponding to the potentials in part (a). 

The results are displayed in Fig. 12.4. Fig. 12.4a shows the BIC partner to the attractive Coulomb 
potential for A = 1, k = 1, and 2 = -2. Fig. 12.4b shows the (unnormalized) wave function of the 
bound state in the continuum for this potential at E. = k*. For comparison the original Coulomb 
potential and wave function are also shown dotted. It is seen that the potential which holds a bound 
state of positive energy shows an oscillatory behavior about the Coulomb potential, V,, as is also . 
evident from the form of Eq. (496) for V. Since the oscillating component vanishes whenever u. 
vanishes, we have V = V at each node of ~0. Compared to the original, unnormalizable wave function, 
the BIC wave function in both cases shows a damped behavior due to the denominator function. This 
is also seen in the figures. 

A similar behavior is also expected for other spherically symmetric potentials with a continuous 
spectrum of positive eigenvalues. For arbitrary one-dimensional potentials, where the range extends 
from --oo to +oo, the situation is not so clear cut. Our method works for the Morse potential which 
is steeply rising on the negative x-axis with correspondingly damped wave functions. It also works 
for the case of a particle in a constant electric field for similar reasons. For potentials, such as 
V(x) = -Vosech2x, the integral 10 in Eq. (497) is not convergent if the starting point is chosen at 
-co, and it gets negative contributions if the starting point is selected at finite x-values. This leads 
to a vanishing denominator function in the expressions for some wave functions which makes them 

unacceptable. 

(b) Two parameter family ofpotentiaZs. In the previous section (a), we have seen how to generate 
a one-parameter family of potentials with one BIC. We now show how this procedure can be extended 
to construct two-parameter families which contain two BICs. 

In constructing the new wave functions for the one-parameter family, Eq. (496), we observe that 
the denominator function given in Eq. (498) was all that was needed to create the BIC, while the 
operation in Eq. (499) ensured that the wave functions for all the other states, there represented by 
Gl, are a solution to the new potential. Note again, there is nothing special about the ordering of the 
two energy values nor the relative magnitude of E. and El, therefore we can repeat this procedure 
by applying the theorem to the wave functions and the potential of the one-parameter family, but this 
time we transform the state at El into a BIC. The state at Eo, which already is a BIC, is transformed 
in the step of Eq. (499), suitably modified, to become a solution to the new potential. In this way 
we obtain the two parameter family of potentials 
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with the solutions of the corresponding Schrijdinger equation 

~o=(Eo-E*)iio+a,w(ii,,a,), 

2 a1 
Ul 

=jl$- 

and 

(508) 

(509) 

(510) 

il - J #(r’)dr’. (511) 
0 

The precise relationship of the new potential and its wave functions, which are now both BICs, is 
illustrated in the last column of Table 12.2. 

While the compact form of Eqs. (508)-( 510) explicitly shows the method of construction, it is 
useful to observe that the integral & can be conveniently re-cast into a simpler form which contains 
integrals of the form 

r 

Zi = J uf(r’)dr’, 

0 

involving the original wave functions only. Making use of Eq. (499) for B1, we get 

r 

i, = J[ u;w 6% - Eo>~u: + cIo+Aj2 +~(EI -Eo) cI~~$W dr'. 

0 1 
The second term is integrated by parts as 

r 

J 4 
(IO + A)2 

W2(r’)dr’ = - 
-I@ r+ r 2?Vw’ dr, 

I/ lo+Ao (Jo+A) * 
0 0 

(512) 

(513) 

(514) 

We now use Eq. (500) for the derivative of a Wronskian of two solutions of the Schrodinger equation 
to rewrite the second term and observe, that it exactly cancels the last term in Eq. (513). We therefore 
have 

f,(r) = 
--WV-) I 

0 

+ A + (El - Eo)2Mr). 

Here we have made use of the fact that our boundary conditions imply that W(0) = 0. 
As an example, we evaluate the two-parameter potential 

(Zo+A)[(E, -Eo)211 - 

The argument of the logarithm can be rewritten as 

(515) 

(516) 

(EI - Eo)~ZOZI - W2(r) + AAl + A(E, - Eo)*Z, + Allo. (517) 
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Fig. 12.5. (a) An example of a potential with two BICs at energies EO = 1 and El = 4. (b) The wave functions at energies 
Eo=l (dashedline) andEl =4 (dottedline) [115]. 

We happen to have transformed first the state at energy E. into a BIC and then, in the second 
step, the state at El, which introduced the parameters h and A,. Let us now consider applying our 
procedure in the reverse order, that is let us first transform the state at energy El into a BIC and 

then the state at energy Eo, producing the parameters ,u and pI. For this situation, the argument 
corresponding to Eq. (517) is 

(El - J%)~M, - W2(r) + ,upul + pul(El - Eo)~& + ~11. 

Clearly, one expects symmetry. This is guaranteed if the parameters are related by 

(518) 

(519) 

This also leads to the same two-parameter wave functions. We also note that transforming any state 
twice by Eq. (498) does not create a second denominator or anything else new, but simply changes 
the value of the parameter A as shown in Ref. [70]. Finally, relation (509) ensures that all other 
eigenstates will be solutions to the new potentials. 

Shown in Fig. 12.5 is a potential with two BICs at energies Eo = 1, El = 4. Clearly, the above 
procedure can be readily extended to obtain multi-parameter families with multiple BICs at arbitrarily 
selected energies. 

Our discussion of BICs has been restricted to effectively one dimensional problems, and as stated 
before there is now some experimental evidence for the existence of BICs under appropriately chosen 
conditions [ 2271. Recently, there has also been a computation which claims the existence of BICs 
in QED in three dimensions [ 2301. These authors have also speculated that the BIC energies they 
compute in e+e- scattering in QED are in fact in reasonable agreement with unusual peaks observed 
in recent heavy ion experiments [ 23 11. 

13. Parasupersymmetric quantum mechanics and beyond 

In the last few years, exotic quantum statistics have been widely discussed in the literature. For 
example, in two space dimensions, one can have a one-parameter family of statistics interpolating 
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between Bose and Fermi statistics [232]. On the other hand, in three and higher space dimensions 
parafermi and parabose statistics [233-2361 are the natural extensions of the usual Fermi and Bose 
statistics. In particular, whereas Fermi and Bose statistics describe the two one-dimensional represen- 
tations of the permutation group, parafermi and parabose statistics describe the higher dimensional 
representations of the same group. In view of the fact that the SUSY has provided us with an elegant 
symmetry between fermions and bosons, it is natural to enquire if there exists a generalization which 
includes the above exotic statistics. Such a question was raised many years ago in the context of 
parastring models [237], but the specific symmetry algebra was still the usual SUSY one. 

In this section, we study the possibility of having a symmetry between bosons and parafermions. 
We shall construct parasupersymmetric quantum mechanics (PSQM) of a boson and a parafermion 
of orderp(= 1,2,3,. . .). It turns out that whereas in the usual SUSY QM, the symmetry generators 
obey structure relations that involve bilinear products, in PSQM of order p, the structure relations 
involve products of (p + 1) parasupersymmetry (PARASUSY) charges. Various consequences of this 
algebra are also discussed. 

It is worth adding here that historically the PSQM of order 2 was introduced first [ 1061 and its 
various consequences were discussed [ 238-2421. Initially it was felt that the generalization to order 
p was not possible in the sense that the PSQM of order p cannot be characterized with one universal 
algebraic relation [ 2431. However, later on, one was indeed able to construct such a PSQM of order 

P [1071. 
Very recently, new forms of quantum statistics called orthofermi and orthobose statistics, have been 

constructed [ 2441. It is then natural to construct orthosupersymmetric quantum mechanics (OSQM) 
where there is symmetry between a boson and an orthofermion of order p [ 1091. Unlike the PSQM 
of order p, one finds that the structure relations now involve only bilinear products of the symmetry 
generators. Various consequences of SUSY QM, PSQM and OSQM are also discussed in this section. 
In particular, it is worth pointing out that whereas in SUSY QM and OSQM of order p, the energy 
eigenvalues are necessarily nonnegative, in PSQM of order p they need not be so. 

13.1. Parasupersymmetric quantum mechanics 

In order to motivate the algebra of PSQM, let us recall that in SUSY QM the symmetry between 
a boson and a fermion is characterized by the algebra 

Q’=O=Q+*, [f&Q] =O, QQ++Q+Q=2H. (520) 

Note that there is an extra factor of 2 on the right hand side compared to the algebra given in Section 
2. This results from assuming m = 1 in this section, in conformity with the notation followed by 
the various authors in this field. The SUSY QM algebra is easily motivated by recalling that the 
fermionic operators a, a+ satisfy the algebra 

a2=O=at2, {a,a+}=l. 

A useful representation of a and a+ is in terms of the 2 x 2 matrices 

(521) 

a=(: h), at=(y i). (522) 
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Let us now consider the 
satisfy the algebra [236] 

(b)P+’ = 0 = (bt)P+‘, 

[[&b],b] =-2b, 

On letting 

parafermi operators b, b+ of order p ( = 1,2, . . .) which are known to 

[[b+,b],bt] =2bt. 

(523) 

(524) 

J+ =b+, J- =b, J3 = ;[bt,b], (525) 

it immediately follows from Eqs. (523) and (524) that the operators J* and J3 satisfy the SU(2) 

algebra 

[J+,J_] =2J3, [J3,Jk] =%J*. (526) 

Let us now choose J3 to represent the third component of the spin f representation of the W(2) 
group as given by 

J3=diag c,g-l,..., -;+l,-$ . 
( ) 

(527) 

It is now easily seen [ 1071 that the operators b and b+ can be represented by the following 

(p+l) x (p+l) matrices [Ly,p=1,2,...,(p+l)] 

(@up = Cp&,p+l; (&p = Cp&+~,p (528) 

where 

c, = &(P - P + 1) = cp-PSI. (52% 

It is easily checked that the operators b and b+ indeed satisfy the algebra as given by Eqs. (523) 
and (524). One can now ask as to what multilinear relation is satisfied by b and b+ apart from the 
one given by Eq. (523)? It turns out that the nontrivial relation is 

bPb+ +bP-lbtb+...+ bb+bP-’ + b+bP = $(P+ l)(p +2)&‘-l, (530) 

where one has (p + 1) terms on the left hand side. As expected, for p = 1 this reduces to the bilinear 
relation for the fermionic operators given in Eq. (521) . 

This relation between b and b+ strongly suggests that one may have an analogous multilinear 
relation in the algebra of PSQM of order p. To that purpose, let us choose the PARASUSY charges 
Q, and Q/ as (p + 1) x (p + 1) matrices as given by 

(Ql)ap = (f’ - i~pPa,p+~; (QfLp = (f’ + W3a+,,, (531) 

where LY,~= 1,2,. . . , (p + l), so that Q, and Q/ automatically satisfy 

Qf” G () = (Q,t)p+‘. (532) 

Further, it is easily shown that the Hamiltonian (ti = m = 1) 

(W@ = JW,,~ (533) 

where (r=1,2,...,p) 
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H Pfl = ; + ;(w; + w;> + ;cp (534) 

commutes with the PARASUSY charges Qi and Q/ provided (s = 2,3, . . . , p) 

wf_, + w,l_, + c,_, = wf - w,’ + c,. (535) 

Here C1, C,, . . . , C, are arbitrary constants with the dimension of energy. It turns out that the nontrivial 

relation between Qi, Q/ and H is given by [ 1071 

Qf Qf + Q;-‘Q~QI+. . * + Q,Q/Qf-’ + QfQf = 2pQf-‘H , (536) 

and Hermitian-conjugated relations (which we shall not write explicitly) provided 

c, + c, + * * . + c, = 0. (537) 

An example is in order at this stage to illustrate the structure of PSQM of order p. If one chooses 

w, = w, = . . . = w, = 0)x, 

then it follows from Eq. (535) that in this case (r = 1,2, . . . , p) 

(538) 

C r+l - Cr = 2@, (539) 

and the Hamiltonian (533) takes a very simple form given by 

P2 
H = - + b2x2 - J30 

2 2 
3 (540) 

where J3 is as given by Eq. (527). This H describes the motion of a particle with spin p/2 in an 
oscillator potential and a uniform magnetic field. The spectrum of this Hamiltonian is 

E,,,, = (n + ; - m)w, (541) 

where n=0,1,2,... and m=p/2,p/2- l,..., -p/2 so that the ground state energy of the system 

is negative unlike in the usual SUSY QM. It is also clear from here that whereas the ground state 
is nondegenerate, the first excited state is two-fold degenerate, etc. and finally the p’th and higher 
excited states are (p + 1)-fold degenerate. Of course for p = 1 we recover the well known results of 
SUSY QM. 

Several comments are in order at this stage: 
(i) For arbitrary W, too one can show that the spectrum of the PSQM Hamiltonian is (p + 1)-fold 

degenerate at least starting from the p’th and higher excited states. The nature of the ground 
and the first (p - 1) excited states would however depend on the specific form of W,. 

(ii) With the PSQM Hamiltonian as given by Eqs. (533) and (534), one can associate p super- 
symmetries characterized by the corresponding p superpotentials W,( r = 1,2, . . . , p) and the 
corresponding p SUSY QM Hamiltonians are given by 

H$,, = 
H, - ;Cr 0 

0 > Hr+l-;C, ’ 
(542) 

where H, is given by Eq. (534). 
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(iii) 

(iv) 

(v) 
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Apart from Ql, there are (p- 1) other conserved, independent PARASUSY charges Q2, Q3, . . . , Q,, 
defined by (s=2,3,...,p) 

Qs = (J’ - iwpPo,p+~ if P$s, 

= -(P - iw$G,p+, if p = s, (543) 

all of which commute with the Hamiltonian (534) and also satisfy the PSQM algebra as given 
by Eqs. (532) and (536) [107]. 
There is an interesting application of PSQM in nonrelativistic quantum mechanics. As we have 
seen in Section 3, given any Hamiltonian Hi with p bound states with energies El, EZ, . . . , Ep 

and the corresponding eigenfunctions +9,, $2, . . . , t,b,,, one can always generate p other Hamilto- 

nians J32, H3,. . . , HQ+I) with the same spectrum as Hi except that 1,2, . . . , p levels respectively 
are missing from them. Further in that case there are p supersymmetries with the corresponding 
Hamiltonians being precisely given by Eq. (542). Besides, the p constants Cl, C,, . . . , C,, are 
related to the energy eigenvalues by (r = 1,2, . . . , p) 

C,=%EpfE,,,+ +. . + E,+, - 
P 

(P-l)E,+E,-,+...+E,]. (544) 

Thus instead of associating the symmetry algebra sE( l/l) @ SU(2) or U( 1) @ SU(2) as we 
did in Section 3, one can also associate parasupersymmetry of order p to the hierarchy of 
Hamiltonians H,, Hz, . . . , HP [ 1071. 

What is the most general solution of the relation (535) which must be satisfied in order to 
have the PSQM of order p? Treating W, f W,._, as the two variables, Eq. (535) can be reduced 
to a simple nonlinear equation which can be immediately solved [ 1061. This is however not 
very useful as it gives us W, + W,._, for a given W, - W,._,. Ideally, we would like to know 
the most general solution for W2 for a given WI and then using this W,, one would recursively 
obtain W3, W4, . . . , W,. Unfortunately, this problem is still unsolved. Of course shape invariant 
potentials satisfy Eq. (535) but shape invariance is clearly not necessary. As discussed above, 
given any H with p bound states, one can always construct WI, W2, . . . , W, which will satisfy 
Eq. (535). 

One unsatisfactory feature of the PSQM of order p is that except for p = 1, H cannot be 
directly expressed in terms of the PARASUSY charges Q, and Qt. This is because, in Eq. (536)) 
H is multiplied by Qy-’ whose inverse does not exist. Another unsatisfactory feature is that unlike 
in SUSY QM, the energy eigenvalues are not necessarily nonnegative and there is no connection 
between the nonzero (zero) ground state energy and the broken (unbroken) PARASUSY. It turns 
out that in case all the constants C1, C2, . . . , C, are chosen to the zero, then one can take care of 
both of these unsatisfactory features [ 1081. In particular, in that case H as given by Eq. (534) can 
be expressed in terms of any one of the p PARASUSY charges Qs by (s = 1,2, . . . , p ) 

H = $Q:Qs - QsQ,t>'+Q,'QsQsQfl"'~ (545) 

It is immediately clear from here that all the energy eigenvalues are necessarily nonnegative and 
that the ground state energy being 0 (> 0) corresponds to unbroken (broken) PARASUSY. Further, 
one can also show that in this case all the excited states are always (p + 1)-fold degenerate while 
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the nature of the ground state will depend on the specific form of W, [ 1081. In the limit of p --f M 

it has been shown that the relation (545) reduces to 

H = ;QJ& (546) 

which can be termed as the PSQM of infinite order whose algebra corresponds to that of Greenberg’s 
infinite statistics [ 2451. 

There is an interesting application of this version of PSQM to the strictly isospectral Hamiltonians 
discussed in Section 7. In particular, one can show that any potential V, = q - Wi with at least one 
bound state, forms PSQM of order p along with its SUSY partner potential V, = q + W[ and with 
the strictly isospectral potential families V, ( X, AZ), V, (x, A3), . . . , V,( x, AP ) where AZ, As, . . . , A, are 
arbitrary parameters which are either > 0 or < - 1 [ 2031. 

Eq. (545) shows an explicit expression for the Hamiltonian H which involves just one charge Qs 
but an overall square root. There is an alternative expression for H where it is not necessary to take 
the square root, but which involves all the p PARASUSY charges [ 1081: 

2H = QrQ! + Q!Qr i- i &QjQs + Q:Qr - 2Q;Q,.) 
s=l 

(547) 

where, r,s= 1,2,. . . , p and s $ r . Further, H and Qr also satisfy the simpler relation 

QrQ,tQr = 2QrH. 

In case one chooses W, to be of form ((w = 1,2,. . .,p) 

W =_A+a-1 
a 

x ’ 
then one has a model for conformally invariant PSQM of order p. In this case one can show that the 
dilatation operator D and the conformal operator K defined by 

D=-$(xP+Px), z+ (550) 

satisfy relations analogous to those given in Eqs. (545)) (547) and (536) in terms of the PARASUSY 
charges Qn and parasuperconformal charges S, defined by [a = 1,2, . . . , p; i, j = 1,2, . . . , (p + 1) ; 
r=2,3,...,p] 

(Sl)ij = -x4+1,j, (551) 

(Sr)ij = -XSi+l,j if i $r + 1, 

= Xsi+l,j if i=r+ 1. (552) 

13.2. Orthosupersymmetric quantum mechanics 

Recently, Mishra and Rajasekaran [244] have introduced new forms of quantum statistics called 
orthofermi and orthobose statistics. Orthofermi statistics contain a new exclusion principle which is 
more stringent than the Pauli exclusion principle: an orbital state shall not contain more than one 
particle, whatever be the spin direction. The wave function is thus antisymmetric in spatial indices 
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alone with the order of the spin indices frozen. In an analogous way, one can also define orthobose 
statistics. All these properties follow provided the corresponding creation and annihilation operators 
Ct and C satisfy 

ckc&@ * 6-+’ 2 c,!, gam,,,$ky = ~krn&+ 
y=l 

ck&n, f (h&k, = 0, 

(553) 

(554) 

where the upper and the lower signs lead to the orthofermi and the orthobose cases respectively and 
the Latin indices k, m, . . . and the Greek indices (Y, j3, y, . . . correspond to space and spin indices 
respectively. 

For constructing the quantum mechanics of a boson and an orthofermion, we ignore the spatial 
indices in Eqs. (553) and (554) and obtain 

C&J + s,,-&$, = a,,, (555) 
y=l 

C&=0. (556) 

Eq. (555) implies that 

c,c,t=c~c~=...=cPcpt. (557) 

Following the discussion of the last subsection it is easy to see that a useful representation of 
these operators is in terms of the (p + 1) x (p + 1) matrices defined by (cr, p = 1,2, . . . , p; r, s = 

132,. --,(P+l)) 

(Ca>m = h&,a+1; w;)rs = &,l&,a+l* (558) 

Let us now try to write down the algebra for the OSQM of order p where there is a symmetry 
between a boson and an orthofermion of order p [ 1091. On comparing the algebra for the fermionic 
and the orthofermionic operators as given by Eqs. (521), (555) and (556) and remembering the 

SUSY QM algebra as given by Eq. (520) it is easy to convince oneself that the p ORTHOSUSY 
charges Qa, Qd and the Hamiltonian must satisfy the algebra ((Y, /3 = 1,2, . . . , p ) 

QaQ; +s,,eQ;Qy ='W,H, (559) 
y=l 

QaQp =O, [XQal =O. (560) 

Note that for p = 1 we recover the usual SUSY QM algebra. It is easily checked that if we choose 
the p ORTHOSUSY charges Qa as (p + 1) x (p + 1) matrices as given by (r = 1,2, . . . , (p + 1) ) 

(Qa)rs= (f'- iWa)&,,&,,+,; (Q:>rs = (f' +iWa)%1&,,+1 (561) 

and the Hamiltonian H as 

(H),, = H&,, 

where (r= 1,2,...,p) 

(562) 
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then the OSQM algebra as given by Eqs. (559) and (560) is indeed satisfied provided 

w;+w;=w;+w;. 
Note that this condition directly follows from the OSQM relations 

Q,Q,t = QzQ,t +. . = QpQ;? 

(564) 

(565) 

which follow from the OSQM relation (559). Thus, unlike PSQM, the constants C1, C,, . . . are not 
allowed in OSQM. The various consequences of the OSQM have been discussed in detail in [ 1091. 
At this point, it may be worthwhile to make a relative comparison of SUSY QM with PSQM and 
OSQM. 

(i) First of all, the close similarity in structure between OSQM and PSQM must be noted. For order 
p, both are based on (p + 1) x (p + 1) matrices and the structure of H in the two cases is very 
similar. The chief difference between the two is the absence of the constants C1, C,, . . . , C,, in 
the former while in the latter they may or may not be zero. 

(ii) Whereas the ground state energy is zero (> 0) in case the SUSY or the ORTHOSUSY is 
unbroken (spontaneously broken), in general, there is no such restriction in the PSQM case and 
the energy eigenvalues can even be negative. However, in the special case when C1, C,, . . . , C, 
are all zero then the PSQM has similar prediction as the other two. 

(iii) Whereas in the SUSY QM, all the excited states are necessarily two-fold degenerate, in OSQM 
of order p they are necessarily (p + 1 )-fold degenerate. On the other hand, in the PSQM of 
order p, all the levels starting from the P’th excited state (and above) are necessarily (p + l)- 
fold degenerate except when all the constants are zero in which case all the excited states are 
necessarily (p + 1 )-fold degenerate. 

14. Omitted topics 

So much work has been done in the area of SUSY QM in the last 12 years that it is almost 
impossible to cover all the topics in such a review. We have therefore decided to give a brief 
description of some of the omitted topics. For each topic, a few references are provided, so that 
interested readers can go back and trace other references and get a good idea of the developments. 

(i) Supermathematics [ 2461. 
(ii) SUSY in atomic physics [ 41,421. In a series of papers, Kostelecky et al. [41] have discussed 

the relationship between the physical spectra of different atoms and ions using SUSY QM. In 
particular, they have suggested that the helium and hydrogen spectra come from SUSY partner 
potentials. This connection has been commented upon by Rau [42]. 

(iii) SUSY in condensed matter and statistical physics [ 163,248-2521. Ideas from SUSY have 
been used to give insight into random magnetic fields in Ising-like models, polymers, electron 
localization in disordered media and ferromagnets. These topics are covered in a set of review 
talks found in the Proceedings of the Conference on Supersymmetry held at CNLS in 1983 

[151. 
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(iv) Index theorem and SUSY [ 253,25,28,26,27]. The Atiyah-Singer index theorem can be related 
to understanding the index of the Dirac operator on suitably defined spaces. From our previous 
discussion of SUSY and the Dirac equation, it is not surprising that the index of the Dirac 
operator is related to the Witten index of the related SUSY QM. Using techniques similar to 
calculating the fermion propagator in an external field, it has been possible to give a proof of 
the Atiyah-Singer index theorem using the supersymmetric representation of the index theorem. 
This work is best described in lectures of Alvarez-Gaume given at the Bonn Summer School 

[ 271. The question of axial anamolies are best phrased using these methods. 
(v) Factorization method and solvable potentials [49,14,51]. The method of factorization which 

can be traced as far back as Bemoulli( 1702) and Cauchy( 1827) can be shown to be exactly 
equivalent to solving potentials by SUSY and shape invariance with translation. The reader 
interested in the history as well as an excellent presentation of the factorization method and its 
connection with SUSY is referred to the work of Stahlhofen [ 511. 

(vi) Group theory method and solvable potentials [ 2541. In the doctoral thesis of Jainshi Wu, it is 
proven that there is a one to one correspondence between using the differential realizations of 
the SO( 2, 1) potential group and the factorization method of Infeld and Hull [ 141. Thus all the 
solvable potentials found by Infeld and Hull can be also obtained using group theory methods. 
By extending the symmetry group to SO( 3,1) and SU( 3,1) the Yale group was also able to 
study several three dimensional scattering problems. 

(vii) Quasi-solvable potentials [ 255,256]. These potentials, for which a finite number of states can 
be determined analytically, are intermediate between non-solvable and analytically solvable 
potentials discussed in this review. Quasi-solvable potentials have been discussed by Shifman 
and Turbiner [255,256] and using the techniques of SUSY QM a large number of new quasi- 
solvable problems have been discovered [ 2571. 

(viii) SUSY breaking and instantons [ 12,30,11,258,259]. One of the least understood problems in 
supersymmetric field theories is that of the origin of SUSY breaking. One suggestion for SUSY 
breaking is that it is of dynamical origin and that instantons are responsible for it. As a testing 
ground of these ideas, the role of instantons in the dynamical breaking of SUSY has been 

studied extensively in various quantum mechanical models. 
(ix) Propagators for SUSY partner potentials [ 98,991. Since the propagator for a system with a given 

potential is determined from the Hamiltonian, and the various Hamiltonians in a heirarchy of 

SIP are related by 

QWH’“) = H'"+"Q(a,), (566) 

one can derive recursion relations for the propagators of the hierarchy. If one member the 
hierarchy has a known propagator (such as the harmonic oscillator or the free particle) then 
it is easy to use these recursion relations to derive the propagators for the heirarchy. This also 
allows one to calculate path integrals for SIP. 

(x) SUSY and N-body problem [260,150]. A novel algebraic structure is found for l/r* family 
of many body problems which provide a novel link between SUSY and quantum integrability 
[ 2601. Also of considerable interest is a supersymmetric generalization of a N-particle quantum 
mechanical model with combined harmonic and repulsive forces [ 1501. 

(xi) Coherent states for SIP [ 2611. Recently a Lie algebraic treatment of the SIP has been given 
and using it coherent states have been constructed for these potentials. 
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(xii) SUSY and new soliton solutions [ 2621. It is well known that the stability equation for the kink 
solutions in scalar field theories in 1 + 1 dimensions is a Schrodinger-like equation. It has been 
shown that new scalar field theories with kink solutions can be obtained by considering the 
isospectral deformation of this problem. 

(xiii) SWKB and tunneling [ 263,821. Expression for transmission coefficient T through potential 
barriers has been obtained within the SWKB approximation and it has been shown that the 
analytic continuation of T for the inverted SIP (with translation) leads to the exact bound state 
spectrum. 

(xiv) Time-dependent Pauli equation [ 2641. Kostelecky et al. [264] have succeeded in factorizing 
the time dependent Pauli equation and utilizing the SUSY to solve the Pauli equation for a time 
dependent spatially uniform magnetic induction. 

(xv) SUSY and nuclear physics [ 247,157,265]. Relations between the spectra of even-even and 
neighbouring even-odd nuclei have been obtained by using the concepts of SUSY [ 2471. Also, 
Baye [ 1571 has shown that the deep and shallow nucleus-nucleus potentials which have been 
successfully used in the past are in fact SUSY partner potentials. It has also been suggested 
that the relationships seen between the energy levels of adjacent superdefotmed nuclei can be 
understood in terms of SUSY [265] 

(xvi) q-supersymmetric quantum mechanics. Inspired by the recent advances regarding quantum 

groups and algebras, Spiridonov [61,62] has proposed a deformation of the SUSYQM. In 
particular, he has explicitly defined q-SUSY algebra and provided its explicit realization on the 
Hilbert space of square integrable functions. It is worth noting that in this case the supercharges 
are not conserved as they do not commute with the Hamiltonian. However, in the limit of q 

going to 1, one recovers the conventional SUSY QM. Further, in this approach the spectrum of 
HZ and H1 are not degenerate but rather the spectrum of Hz is obtained from that of HI just 
by q2-scaling i.e. Ec2) = q2E(‘).P ossible exception concerns only the lowest level exactly as in 
ordinary SUSY QM. In particular, if the q-SUSY is unbroken (spontaneously broken) then the 
ground state energy of HI is zero (> 0). 
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