B/ @'V‘ GGL [ 0.0
Physics 992 Final Exam

1.

Consider the Quantum Electrodynamics(QED) theory, up to one-loop, inthe
't-Hooft-Feynman gauge.

(a)

Write down the bare Lagrangian.

Lo, B, — 9070w — mOTOWO 1ie0F0y, WOAQ + L.(8,49)°

Fﬂu — 3;11‘1'3 —SL-AE
(b)

Rewrite the bare Lagrangian in terms of the renormalized Lagrangian and the
counterterms.

Define
g JZ_3A£
PO = JZ, WF
e? =27, e"

m® = Z,.m"

Inserting the fields and parameters into the BARE Lagrangian, and writing Z; = 1 + 6Z;, we
split the bare Lagrangian into the renormalized Lagrangian £*

£R = —LFRFf, — PRyowR — mFORWR iR PRy AR+ L(6,45)°
R _ R R
FJU"' — E’IPAU _aux‘{ip
and the counterterm Lagrangian o£

_523 FiFE, —8Z,VRyoWE — (ZnZs — m®PRPE 4 6Z1F ie® PRy, WRAE + 523%(3;114,{5)3

(C)
How to introduce the renormalization scale (#) dependence in the Lagrangian?

The action § = I;Ed”.:r Is dimensionless, and d"x has dimension [uz]™ in the n-dimension, so
(0A ) ~[1]" = A~[u]*!
Ty e 8¥~[p]" = W~[p]
eVyWA~[u]" = f-[p]% = [u]®%.n =4 — 2¢

In order to keep the renormalized coupling constant dimensionless, we introduce the
renormalization scale and replace ¢° by ufe?.
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cp
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Pencil
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Pencil


(D)
Calculate the divergent piece and the In(x#*) dependence using the dimensional

regularization scheme for the two point functions of electron and photon, and the
three point function of photon-electron-electron.

The two point functions of electron
iz(p) = f}'-p{ lg;;:f |: é —ve + In(4r) +ln(i';;2 ) +O(e)]}
The two point function of photon
- . 2 4\ 1 1
Inpu(f)) — (P gp_v' _PPPL’){ ]_g;?l'z (_3 )|:E _}’E+ln(4ﬂ) +ln(iﬁ ) +O(E)]}

The three point function of photon-electron-electron

A, = :,;P{ 12;:3 |: % —ve+In(4r) +ln( i‘; ) -I-O(E)]}
(E)

Identify the explicit expression of the counterterms using the Minimal Subtraction
(MS) scheme.
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(F)

What are the explicit expression of the counterterms in the modified MS scheme?

Zgzl—lg;rz_é—}fg+ln(4grr)-
Zo=1-—_[L1_ oy, tn@n)
° ler2 L 7F |
1:1—12;2_‘%—%“11(4@_

(G)
Write down the relation you found among the counterterm. What is the reason for
that identity to hold?

We could see that Z, = Z, easily, such that

2o Z
el = hz - e = JZye°
!




It is due to Ward identity.
(H)
Write down the renormalization group (RG) equation for the electric charge.

.”f%%hMMm ::ﬁ

()

What is the explicit expression of the gfunction?

_,a (4)_  _a _ €
ﬁ_€4x(3)_€3ﬂ’ﬂ 4
(J)

What is the solution of the above RG equation?

(i)
-4 (~4) In( £ )

a(u) =
(K)

In terms of a.,, fine structure constant, plot ;.- as a function of 4 Is it a straight line
oh a semi-log scale?

1355

-0 —10

Yes, It is a straight line on the semi-log scale. For QED, Nr = 1.

(L)

Explain the physical meaning of the running coupling @, (u).

The QED running coupling increases with the energy scale, i.e. the electromagnetic charge
decreases at large distances. This can be intuitively understood as a screening effect of the
virtual fermion-antifermion pairs generated, through quantum effects, around the electron
charge. And quantum corrections make QED irrelevant at low energies (limgz_bﬂ a(Q?) = U),
which are weak at low energy. The running coupling @ (#) includes potentially large logs
from higher order loop corrections.



2.

Consider the Quantum Chromodynamics (QCD) theory, up to one-loop, in the 't
hooft-Feynman gauge.

(a)

Write down the bare Lagrangian

£0 = — (BuAY — 0,AL) (B A™ —8"AM) — Tfurc(B,AS — OV AL)AMAY — L-gfurcfurc ABASAN A
+ Uiy 0 0 —m)W + gPTYFPAG - 5 (-0,A%)" = (8, 7°) (0" 1) + &Fabe (8,7 ) 1A
(b)

Rewrite the bare Lagrangian in terms of the renormalized Lagrangian and the
counterterms.

Redefine the fields and parameters
Ay~ A = JZ3 Af
P - WO = JZ, ¥F
m - m°® = Zm"~
110 =AZs 1
g8 =Zg"
a— a=Z,a"

Inserting these fields and parameters into the BARE Lagrangian, and writing Z; = 1 + 6Z,,
we could split the BARE Lagrangian into the renormalized Lagrangian £

£R —%(apa G 5,A%)(BHAY — BYAYM)
- %ﬁmf(ap‘q G 5, A% )APHA
- %g Eff th EEdEA iA 5-‘4 dPA v
+W(iy « 6 —m)¥
+ gPToy WAS
. a2
5 (OkA™)
—(@ux“)(@" 1)

+ Sﬁebf(ap Z° )IbA i
and the counterterm Lagrangian 6£¢



6E = ~575LAYG05(0,0, — g0 A
- gzl%gfﬂbf(apau —31,&;1*)145”14“'
_524%g2f£bTEdEAﬂAﬁAE‘UAdu
+ 522@(1,}’ * 6' o FH)\P - (ZEZHI - ]-)Fﬂqjq"
+6Z1r g VT y"VAS
_ 3L al 2
- 6Z:(0,7) (0" 7)

+ Szlg}mbf(ap J-f“ )IE?ACI,L!
where Z,.Z4.Z; and Z3 are defined as follows:

Z1 =7.73"
Zy = 7273
Z) = Z,72,]Z;
Zir = 2,25 {Z;
3 _ 23
Z;, = 7,
and
R_ _1 _o_ ZoVZy
8" =78 7.
(C)

How to introduce the renormalization scale (x) dependence in the Lagrangian?

It is the same method as in the question 1, we introduce
gs = gsit
(d)

Calculate the divergent piece and the In(4?) dependence using the dimesional

regularization scheme for the two-point functions of quark and gluon, and the
three-point function of gluon-quark-antiquark.

Two-point function of quark
2 2 £
iy = —fp[—g—*‘,,(TW)( Ay ) lra +s)}
16~ —p-

Two-point function of gluon

. ig? . dru® \°
i1, = - lég;'rz (—q°guw + cjpc},,-)tgf&?(%ccq — %TRNF)( _;:2 ) %r(l + &)

Three-point function of gluon-quark-antiquark




7N &
i1 = (igsy  I™ (4?!‘[1 ) %F(l + &)
—q

1
(E)

Identify the explicit expression of the counterterms in the MS scheme.

Zy= 1+ é; (27) - $TENE ) (£ -7 +log(ér) )

Z,=1- lfnr Co(F)(+ — 7 +log(4m))
Zir = 1 - B [Co(F) + T(A)](+ — 7 +log(4) )
_ _ZLir  _ gs (11 2 1
Z, = szz - 1- £ (LE7a) - 27(F)NE ) (- 7 +log(an) )

(F)

Write down the RG equation for the strong coupling constant a

oas(Q)  _
SIH(QEJ’][F) ﬁ(ﬂS(Q))

(G)
What is the explicit expression of the g function, in terms of the number (Nr) of light

quarks flavours, whose masses are smaller than the considered energy scale? Is g
function greater or smaller than zero in the standard model of particle physics?

11 4
Blas) = —7= [ T(A) - ST(F)Nr |
In the Standard Model, T(A) = 3.T(F) = + and Nr < 6, soO
Blas) <0

(H)
What is the solution of the above RG equation, interms of Apcp?

. - 7 E‘-'El': = =
InIn{ &= } — =2
ﬂfs(ﬂ) _ -2 {1+ 2b (ﬁ- ) by

an(2) | () .

bo = ——L (11-2NF) i :

2r 3
by = (51 - 2Nr)

In the MS scheme, C = 0.
(I

Explain the physical meaning of Apcp?

A ocp represents the scale at which the coupling a.(Q?) becomes so strong that the



perturbative theory breaks down.

(J)
The mass (Mz) of Z-boson is 91.18Gev, and a; (ar Mz) is 0.12. Calculate Agcp for

Nr =4.
AS:) = 0.134206
ASZ) = 0.333842
(K)

Plot --- as a function of u

o)
10

/ - - - : - Ln (1]

()

Explain the physical meaning of the running coupling a;(4).

QCD running coupling decreases at short distance (limgz_m a,(0%) = D), which means the

QCD has the required property of asymptotic freedom. The gauge self-interactions of gluon
spread out the QCD charge, generating an anti-screening effect. This could not happen in
QED, because photons do not carry electric charge. The running coupling as(#) includes

potentially large logs from higher order loop corrections.

3.

Consider the Drell-Yan pair production at a proton-antiproton collider with a center-of
mass energy VS .

(a)

Denote the mass of the Drell-Yan pair to be 9. Write down the relevant formula for

calculating the Born level inclusive production rate of the Drell-Yan pair as a function
of 0, denoted as doidQ?, predicted by the standard model.

=t
]

3 2 - - M
cfcrz = 0 4?1'&’2 (1l -7),7 = —
dQ 3NQ~ s 3

(b)

Consider the next-to-leading order corrections to the Drell-Yan pair production due
to QCD interactions. Draw all the relevant Feynman diagrams for calculating the NLO
QCD corrections.



g
N %W\ Q\M
g
noe — - %_{
(C)

Write the virtual corrections (after summing over the vertex corrections as well as
the wavefunction renormalization contributions) in the 't Hooft-Feynman gauge.

~

2 2y E _
NLO :25.{} 8s 5(1_%)(4?1'1” ) r(l E) _2 . 3 _7_?1'

ok - - = + 0 }
Virtual 16772 2 1—1(1 — ZE) 2 C 3 scheme

(D)
Is there any ultraviolate singularity remained in the total virtual corrections found in
(C)? If no, why not?

No, there is no ultraviolate singularity remained in the total virtual correction.

The tree level coupling is the electroweak coupling and we are calculating the QCD
correction, so the renormalization theory required that all the ultraviolate singularities
coming from QCD corrections must cancel among themselves.

(E)

Identify the sources of the soft singularities in the real-emission (cut-) diagrams.
Show that the soft contributions can be factorized into the product of the tree level
amplitude square and the radiation antenna.




L pL—vl  vps—7l
M = (p Yy L=l vl

(Pl —3)2 (pj —E')E
VP2 _ayny o TPy y = | P2V 0y - P2 :
(p2 —1)° Y uwp2) o (P2 —1)° y u2) |: (p2 —1)° }H(p_) (—po e [) + i u(p2)
il — {
- LY ?1 ‘pl
[ — 0
h »
i a
F@I)TE(T-PI _T'E') 'l-*’(pl:] p"‘i'!

(p1— 17 +ie (—p1el)+ie

After squared the amplitude, we obtain

> > 2prepo >
M- = e~ L £ IMI5.
€ (Pl'g)(PE'f) Tree

Inthe p, — p> c.m. frame, we have

p1=(|p1l.p1)
p> = (|p2|.p2)
1= ([i]-7)
and
2P1 * P2 _ 2(1 —cosfy)

(PreD@2ael) WP (1 -cosh)(l —coshp)

The radiation antenna constant will be divergent when [ - 0, this singularity is due to the
soft gluon.

(F)
Verify that all the soft singularities cancel after summing contributions from (C) and

(E).

The Real corrections at the soft limit is

NLO  _ 95 g: 4rp” " T(l-g) [ 2 2y 4 1 (111(1—{')) }
U.’Safm:m' 26{} ]_6.'?1'2 ( ME ) 1—1(1 _ ZE) EE 5(]' f) £ (1 . %)-‘- + 8 1 _,E_ .
Sum up the NLO virtual corrections and the real corrections at the soft limit, we immediately
see that the double poles -+ cancel between the two kinds of corrections.

(G)
Is there any remaining singularity in the sum of (C) and (E)? If yes, what is the origin
of the remaining singularity?




There is only the collinear singularity remaining in the sum.
(H)

Identify the sources of the collinear singularities in the real-emission (Cut-) diagrams.
Show that the collinear contributions are proportional to the quark splitting kernel
defined in the DGLAP parton evolution equation.

i(py) L2 ) 0Dy

(p1—D° +ig —n.l) +ie

with ny, = (0,1,0)
We see that the factor —=— is divergent when [/ n,,. It is the collinear singularity.

(=n.0)+ie

After considering the real corrections at the collinear limit, we get the NLO cross section
with eikonal approximation

N . g2 [4rpt\° T(l-¢)
NLO _ 95 85 ( A )
¢ T EAE T(1 - 2¢)

2 A a AN D lIl(l —%) e
{—?ng +2(l—f)+[8f—4(l—f) ]( ]_—'E' )+_7_ 3 +55m'a€m£’}

where Py, = Cr (%) is the quark splitting kernel.

()

Explain how the factorization theorem can be applied in this process.

The collinear singularity arises when the gluon is emitted parallel to quark (k+ = 0).
Realizing that the limit k7 — 0 corresponds to a long-range (’'soft’) part of the strong
interaction which is not calculable in perturbation theory. So we can derive the
short-distance cross section from the parton scattering cross section by removing the
long-distance pieces and factoring them into the parton distribution functions. The

remaining cross section involves only high momentum transfers and is insensitive 1o the
physics of low momentum scales.

(J)
Explain how to cancel the remaining collinear singularities found in (H) by redefining
the parton distribution function (PDF).

Exactly as for the renormalization, we can regard PDF ¢°(x) as an unmeasurable, bare
distribution. The collinear singularities are absorbed into this bare distribution at a
"factorization scale 1", which plays similar role to the renormalization scale. The relation
between the scale dependent (renormalized) and bare PDF is

10



1
£ Qhor) = | L[ 8,8~ 1)+ 5 Riey(@ Qhor) [ Fbre (£)
In general, R has the form

N ) v —1p o T(—g) [ 4ny’ ¢ N

RI"J(E’QFDF) B P!—J(Z) 1-1(1 . 25) ( Q%L‘IF + T;—;(Z)

where P..;(z) is the Altarelli-Parisi kernel and T';.;(z) is the finite difference between different
definition of the PDF. After introducing the PDF ‘renormalization’, we could get the finite

hadron level cross section
Qs V" a(n)
2( T O pp

c(PP - W*)
0 ~ (0 0
'?EJ’F?;EH ® U( J ® ¢ };fP;IJ'EH

~ (0)
+ '?ifF bare ® G & ¢ }j;_p ren

1 0
F iR ® 6 @ a7

0 1
+ '?ifF;EH ® UI: : & ¢ }ﬁﬂjbfue

where

1
Fisare@) = f 5 | SR Qo e (3

and the convolution is defined as

o em) = [ A 2.0)aEme

(K)
Write down the relevant formula for calculation do/dQ*.

G(PP - W*)
1 ! o o .
- ZL dx J.TG dx?[ﬂfffF(IIﬁQh)ﬂfﬁﬁ(IiaQh) + qyp(x1,Q7)q (X2,
i Q £y

{6(L-1)

+ c{zm( ﬂg; )( 11+_fr2 ) +4(1-17) +4(1 +%)( 1“(11_-? ) n (_ 3” —7 +55,_.,,W)5(1 - r)]}

+ i; &DZI; dx 'I.inf.n df”[ﬂ};fﬁ(ll)g(l”) + gip(x1)g(x2) + (x1 <> x2
a3 st 3]

(L)

If you are asked to perform a similar NLO calculation for the Drell-Yan process due to
the QED (not QCD) interactions, do you except ultraviolate singularities from virtual
contributions? If yes, how do you handle this new type of singularities so that the
final cross section is finite?

11



Yes, we do have the ultraviolate singularities from virtual contributions. But the ultraviolate
singularities should be canceled after we introduce the corresponding counterterm for the
electric charge..

4.

A one-page summary on what you have learned from this class about the QED and
QCD theories.

(1) Helicity amplitude method
(2) Dimensional regularization and Dimensional reduction scheme.
(I)Dimensional regularization: treat momentum and y,, both in the n-dimension

(Il)Dimensional reduction: treat ¥, in the 4-dimension and momentum in the
n-dimension

The problem of ys:
(I) naive ys does not give correct anomaly.
(Il) 't-Hooft-Veltman ys does not respect Ward Identity.
(3) Eikonal Approximation
(4) Factorization theorem and its’ application inthe Drell-Yan process
(a) Virtual corrections : UV singularities cancel and IR singularities left (- & +)

£

(b) Real corrections: IR divergences
(I)soft limit: soft singularity and collinear singularity (EL2 & +)
The main contribution of real corrections comes from the soft limit (Sudakov
factor)
Soft gluon resummaton (concept)
(I)collinear limit: collinear singularity (<)

Add them up, only collinear singularity left and are proportional to the quark splitting
kernel.

(c) Methods: eikonal approximation and phase space integral
(5) Drell-Yan process calculation (Next-to-leading order)
(a) hard part (subprocess) calculation
b) Redefine the PDF and absorb the collinear singularities into the PDF

(
(c) Apply the Factorization theorem and get the finite hadron level cross section
(6) Running coupling and Effective field theory

(a) QED running coupling and RG equation

(b) QCD running coupling and RG equation
(I) Renormalization scheme: counterterm approach
(1) MS scheme and MS scheme

(1) Agcp
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