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粒⼦子物理的标准模型
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36 Fundamental Forces of Nature: The Story of Gauge Fields
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Fig. 3.4 College T-shirts with Maxwell’s equations, as sported by sopho-
more, senior, graduate student.

form stresses the local effects of electric and magnetic fields. Finally,
Einstein’s covariant form brings out the true essence.

3.12. Lorentz and Einstein

The crux of the Lorentz transformation is that space and time get
mixed up when you move — a wee bit only, if your velocity is much
less that of light; but mix they must. Ironically, this point was lost
on its originator Hendrik Lorentz, who confessed in hindsight:3

The chief cause of my failure was my clinging to the idea that
only the variable t can be considered as the true time, and that
the local time t′ must be considered no more than an auxiliary
mathematical quantity.

The mathematician Henri Poincaré (1954–1912) wrote about the
principle of covariance, which he called the “principle of relativity”;
but it had no physical relevance, because he did not understand the
“relativity” of simultaneity.

3A. Pais, Sublte is the Lord, Biography of Einstein (Oxford University Press,
2005), p. 167.

⻨麦克斯⻙韦⽅方程组

1864年10⽉月27⽇日，⻨麦克斯⻙韦写下⽅方程组：
283种符号，20个变量，20个⽅方程
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标准模型的不⾜足之处
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1）标准模型的粒⼦子谱具有⾮非常⼤大的质量差异和 
中微⼦子质量起源
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标准模型的不⾜足之处
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2）暗物质的粒⼦子物理起源

标准模型中没有暗物质候选者
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标准模型的不⾜足之处
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3）⼤大统⼀一理论

狭义相对论

引力

行星 苹果

原⼦子时代
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弱力

强相互作用
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广义相对论

⼤大统⼀一理论?
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506 The Standard Model and beyond

18.2.3 Can the forces be unified?

It has already been noted that the coupling constants of the three forces of the
Standard Model have similar strengths. At the electroweak scale of q2 = m2

Z,

α−1 : α−1
W : α−1

S ≈ 128 : 30 : 9. (18.1)

Furthermore, in Section 10.5 it was shown that the coupling constants of QED and
QCD run with energy according to

[
αi(q2)

]−1
=

[
αi(µ2)

]−1
+ β ln

⎛
⎜⎜⎜⎜⎜⎝

q2

µ2

⎞
⎟⎟⎟⎟⎟⎠ ,

where β depends on the numbers of fermion and boson loops contributing to the
gauge boson self-energy. In QED where the photon self-energy arises from fermion
loops alone α increases with energy, whereas αS decreases with energy due to the
presence of gluon loops. Because of the weak boson self-interactions, which are
a consequence of the SU(2) gauge symmetry, αW also decreases with increasing
energy scale, although not as rapidly as αS . The running of the different coupling
constants therefore tends to bring their values together. It seems plausible that at
some high-energy scale, the coupling constants associated with the U(1), SU(2)
and SU(3) gauge symmetries converge to a single value. In the mid 1970s, it was
suggested by Georgi and Glashow that the observed gauge symmetries of the Stan-
dard Model could be accommodated within a larger SU(5) symmetry group. In this
Grand Unified Theory (GUT), the coupling constants of the Standard Model are
found to converge (although not exactly) at an energy scale of about 1015 GeV, as
shown in Figure 18.4a.
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标准模型的不⾜足之处
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3）⼤大统⼀一理论：标准模型三种作⽤用⼒力⽆无法统⼀一
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标准模型的不⾜足之处
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4）等级性问题（精细调节问题）
TeV GUT PlanckWeak

Unification,

Neutrino 

See-Saw

EWSB

Dark Matter

BSM

Hierarchy
Quantum 

Gravity

Λ2  /52125 bare

If SM valid up to GUT scale,  
the theory has
extreme fine-tuning !



今天任务：中微⼦子质量起源 
— 跷跷板机制 See-Saw Mechanics

12 Chapter 1. The Standard Model and Particle Masses

Figure 1.1: This child game depicts the idea of the Seesaw Model: the little boy
represents the elusive but heavy singlets while the little girl plays the role of the light
but interacting neutrinos. c⃝ Jessie Willcox Smith

scale. Practically, if we take MR ≫ MD, the mass matrix from Eq. (1.5) can be
diagonalized as:

Mν −→ UTMνU =

(
−MDM−1

R MT
D 0

0 MR

)
, (1.7)

where:

U =

(
1l ρ

−ρ† 1l

)
and ρ ≡ MDM−1

R ≪ 1 . (1.8)

Thus, by a simple redefinition of the fields, we obtain two Majorana mass terms for
combinations of left- and right-handed neutrinos:

(
ν′L
N c′

R

)
= UΨ =

(
1l ρ

−ρ† 1l

)(
νL
N c

R

)
=

(
νL + ρN c

R

N c
R − ρ†νL

)
. (1.9)

This means that the left-handed neutrinos ‘we know’ are actually mixtures
containing small ‘amounts’ of the heavy singlet mass eigenstates, which gives them
mass. Conversely the gauge singlets contain small amounts of left-handed neutrino
mass eigenstates (but this does not affect their own mass). Finally, the value of this
amount is ruled by the ratio between the Dirac and Majorana mass matrices, which
is extremely tiny if we assume the neutrino singlets to be far above the EWSB scale
(i.e. ∼ 103 GeV), hereby explaining the smallness of neutrino masses.

简单 
群论 
应⽤用

32 2 1⌦ = �



为何中微⼦子质量如此之⼩小？
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跷跷板机制 —— 简单优雅的解决⽅方案

1） 加⼊入⼀一个新的      ,（SM +      ）⌫R ⌫R

SM neutral not gauged under SU(2)xU(1)

2） 对⾓角化中微⼦子质量矩阵
�
⌫L ⌫R

�✓ 0 mD

mD M

◆✓
⌫L
⌫R

◆

m⌫ =
m2

D

M
⇠ TeV2

M
⇠ ev

M ⇠ TeV2

eV
=

(103GeV)2

10�9GeV
= 1015GeV



跷跷板机制的种类
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探测新物理的强⼒力⼯工具 — 有效场论

BSM  (   )⇤

SM (      )  mW

L = L(4)
SM +

O(5)

⇤
+

O(6)

⇤2
+ · · ·

O(5,6,··· )
High dimensional operator

are made of SM fields 
with respect to the SM symmetry 
SU(2)xU(1)Y



温伯格中微⼦子质量算符
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Lm⌫ = �fij
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�
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�
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1979年温伯格指出标准模型中存在唯⼀一⼀一个量纲为5的算符 
可以给中微⼦子质量
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温伯格中微⼦子质量算符
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Lm⌫ = �fij
2⇤

�
⌫i�

0 � `i�
+
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⌫j�
0 � `j�

+
�
+ h.c.

1979年温伯格指出标准模型中存在唯⼀一的量纲为5的算符 
可以给中微⼦子质量

(m⌫)ij =
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⌫L ⌫L
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[�] = 1
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问：什么样的
新物理？



温伯格算符
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⾓角动量耦合

标准模型 SU(2)xU(1)
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2

树图跷跷板机制
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树图跷跷板机制：第1和第3类
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树图跷跷板机制：第2类

19

(LL) =

✓
⌫
`

◆

i

⌦
✓

⌫
`

◆

j

=

0

@
⌫i⌫j

⌫i`j + `j⌫i
`i`j

1

A�
�
⌫i`

j � `i⌫j
�

2 2

3

2

✓
⌫
`

◆

L

✓
⌫
`

◆

L

✓
�+

�0

◆
2

✓
�+

�0

◆

相互作⽤用
⾮非质量项

⇠ =

0

@
⇠++

⇠+

⇠0

1

A



粒⼦子物理 
26. ⼳幺正性和电弱理论起源

曹庆宏  
北京⼤大学物理学院
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