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Non-Relativistic QM

* For particle physics need a relativistic formulation of quantum mechanics. But
first take a few moments to review the non-relativistic formulation QM

- Take as the starting point non-relativistic energy:
2

-

52
E=T+vVv=L_L4v
2m
* In QM we identify the energy and momentum operators:
= d
ﬁ — —iV, E — IE
which gives the time dependent Schrodinger equation (take V=0 for simplicity)
o o ~iVy = py
with plane wave solutions: Y = Ne'(PT=Et)  \where v E
or — EVY

* The SE is first order in the time derivatives and second order in spatial
derivatives — and is manifestly not Lorentz invariant.

* In what follows we will use probability density/current extensively. For
the non-relativistic case these are derived as follows

1 -, dy*
S1)* mp —— 2yt = —i
(51)° == 2mV v o

(S2)




. , l dy dy*
*%(S1)—wx(S2): — — (v'Viw—uwViv) = ily*2t
v S -y x (82 L (yviy - yvy) ’("’a:*"’af)
l - = d
V. (¢ Vy—yV ) — iZ(y
o (w y—yVy i~ (v'y)
 Which by comparison with the continuity equation
- ap
V. =0
T* 9 dt
leads to the following expressions for probability density and current:
* & I
p=yy=|yl =5 (v'Vv-vVy')

- For a plane wave Y = Ne/(P7—E1)
—y -). —»
= |N|* and j= |N|2]— = |N|2V
m
* The number of particles per unit volume is |N|?

* For |N|? particles per unit volume moving at velocity 7, have IN|?|¥| passing

through a unit area per unit time (particle flux). Therefore J is a vector in the
particle’s direction with magnitude equal to the flux.




The Klein-Gordon Equation

* Applying p — —iV, E — id/dt to the relativistic equation for energy:

E? = |p|* +m? (KG1)
gives the Klein-Gordon equation:
I Y < 2
37 =Viy—my (KG2)
o llci — d _[(d 2 9 d _ 09 9* 9> 9*
Using d, = 3 = (97,9;,3;,9—:> —) aﬂau =X " 2
KG can be expressed compactly as | (gH aﬂ + mz) v =0 (KG3)

- For plane wave solutions, y = Ne¢i(7"~E!) | the KG equation gives:

—E*y = —|pPy —m’y == E=1\/|p]>+m’

% Not surprisingly, the KG equation has negative energy solutions — this is
just what we started with in eq. KG1

¢ Historically the —ve energy solutions were viewed as problematic. But for the KG
there is also a problem with the probability density ...




* Proceeding as before to calculate the probability and current densities:

2 5 0% .
(KG2)* aa:’z’ = V2y* —m?y? (KG4)
v x (KG2) — v x (KG4) :
*32\!’ 32‘!’* N’ 2 2. X 2.
Vior Va2 =V (Viy —my) =y (Vg™ —m~y7)

d Y oy’ . . .
- F—_— — = V.(y'Vy—-yVy*
5 ( 5 Y3, (V' Vy —yVy')
* Which, again, by comparison with the continuity equation allows us to identify

. *a a i < . * T o *
p=z(wa—‘ﬁ'—wa":) and  j=i(y'Vy—yVy’)

- For a plane wave Y = Ne/(P7—El)

p=2EIN? and j=|N|’p

% Particle densities are proportional to E. We might have anticipated this from the
previous discussion of Lorentz invariant phase space (i.e. density of 1/V in the
particles rest frame will appear as E/V in a frame where the particle has energy E
due to length contraction).




The Dirac Equation

* Historically, it was thought that there were two main problems with the
Klein-Gordon equation:

¢ Negative energy solutions
¢ The negative particle densities associated with these solutions

p =2E|N|?

* We now know that in Quantum Field Theory these problems are
overcome and the KG equation is used to describe spin-0 particles
(inherently single particle description = multi-particle quantum
excitations of a scalar field).

Nevertheless:

% These problems motivated Dirac (1928) to search for a
different formulation of relativistic quantum mechanics
in which all particle densities are positive.

% The resulting wave equation had solutions which not only
solved this problem but also fully describe the
intrinsic spin and magnetic moment of the electron!




Chronology

* 1928, Dirac invents the Dirac equation. The probability density is positive;
however negative energies are allowed (Proc. Roy. Soc. A117, 610-628)

* 1930, Dirac solves the problem of negative energies via the “hole” theory
Anti-particles are related to negative energy eigenstates
(Proc. Cambridge Phil. Soc. 26, 376-381)

* 1934, Pauli and Weisskopf present a new interpretation of Klein-Gordon

equation: as field equation for a charged spin-0 field. QO represents the
charge density. Instead through k" , the energy is given via

5 [ @ [IFof + m?wp]

and thus per definition positive (Helv. Phys. Acta 7, 709-734)

* 1934, The Dirac equation acquires a field-theoretic interpretation

It does no longer determine a probability amplitude, rather the field
operator for a spin 1/2 field.




The Dirac Equation

- Schrodinger eqn: l =, dy  1st orderin d/dt
'm Y= ot 2nd order in 8/3x,8/8y,8/83

* Klein-Gordon eqn:  (9#d, +m?)y =0 2" order throughout

 Dirac looked for an alternative which was 1st order throughout:

. .. d
Hy = (a.p+pm)y —za—‘:f (D1)
where H is the Hamiltonian operator and, as usual, 1')' = —i%

* Writing (D1) in full:

l '\-ax [ \ay ] ~az m W— la{ W

“squaring” this equation gives

—aa aa 'ai+,6 —aa oca 'ai+Br -2
l‘all\a‘l;z m 1‘311‘&1:: m|y = >

* Which can be expanded in gory details as...




Bz TR B g ~ %z ThmY
%y 2y %y
(o0 +a‘a“)3x8_v — (oo + o “‘)aya; — (a0 +a\a:.)aza‘,
J dy dy

—i(ouB + o) m<Y. _i (a,B+ Bay)m—— —i(o.B + Bo.)m——
dx dy dz

* For this to be a reasonable formulatlon of relativistic QM, a free particle
must also obey E? = p -+ m? , i.e. it must satisfy the Klein-Gordon equation:
Py _ dy dy Iy

— = m’
o2 " o2 oy oz MV

* Hence for the Dirac Equation to be consistent with the KG equation require:

w=at=at=p*=1 (D2)
ooy + O O =0 (j#k) (D4)

*Immediately we see that the &; and ﬂ cannot be numbers.
= Require 4 mutually anti-commuting matrices

% Must be (at least) 4x4 matrices (see Appendix |)




Consequently the wave-function must be a four-component Dirac Spinor

& A consequence of introducing an equation
Y= Y3 that is 1st order in time/space derivatives is that
172 the wave-function has new degrees of freedom !

+ For the Hamiltonian Hy = (&.p + Bm)y = id y/dt to be Hermitian
requires

w=o; oy=of; a=a; B=p (D5)

i.e. the require four anti-commuting Hermitian 4x4 matrices.
- At this point it is convenient to introduce an explicit representation for &, 3 .

It should be noted that physical results do not depend on the particular
representation — everything is in the commutation relations.

* A convenient choice is based on the Pauli spin matrices:

B=(0-1): @=(o,7)

wn 1= (49). a=(28): =(2%) @-(39)

e The matrices are Hermitian and anti-commute with each other




Dirac Equation: Probability Density and Current

* Now consider probability density/current — this is where the perceived
problems with the Klein-Gordon equation arose.

- Start with the Dirac equation

o _ i, 2¥ alV—I-mﬁl}lzia—w (D6)

—iQ Oy —=— — 10,
pod PRELCH MY ot
and its Hermitian conjugate

oyt oyt L dyt Rt Oy’
— O, (04 o, ' —_— D7
+i 3> '+lay s +i oy Ttmy' B = lat (D7)

- Consider ' x (D6) — (D7) X ¥ remembering ¢, 3 are Hermitian s
+ ¥ # t

dy dy  dy A AP AP LAY I(y'y)
i oy, ov_ . v _
= "’( *Ix T gy Tk 3:)+(3xa"+ gy Bt %)V —5 =0
AN Y J

*Now using the identitv: .
i oy oy (Y ony)

dx




V'Y _, (D8)

gives the continuity equation 6-(‘I’+a‘1’) + 5
t

where v = (y{, 3, y3, ;)
* The probability density and current can be identified as:
p=vy'y| and | j=y'ay
h —wiw=lu? 2 2 250
where p =Y \V—|l}/|| +|ll/2| +|W3| +|‘V4| >

» Unlike the KG equation, the Dirac equation has probability densities which
are always positive.

* In addition, the solutions to the Dirac equation are the four component
Dirac Spinors. A great success of the Dirac equation is that these
components naturally give rise to the property of intrinsic spin.

* It can be shown that Dirac spinors represent spin-half particles (appendix |l)
with an intrinsic magnetic moment of

i= 95 SEAR (appendix Ill)
m R AP




Covariant Notation: the Dirac y Matrices

* The Dirac equation can be written more elegantly by introducing the
four Dirac gamma matrices:

’};)EB; }’Izﬁax; Yzzﬁa}’; ‘};‘Eﬂaz

Premultiply the Dirac equation (D6) by f3
iBon 5t oy £ tipay AZ +,;3a-—"’ — By = —iBa—

: . . d
- Yy a—x+z}’“a—y+t’y3 3, —mulz—z}p a‘f

using 8“ = (%, 7‘7—, ;%, 9‘%) this can be written compactly as:

G aox

(iYtody —m)y =0 (D9)

% NOTE: it is important to realize that the Dirac gamma matrices are NOT
four-vectors - they are constant matrices which remain invariant under a
Lorentz transformation. However it can be shown that the Dirac equation
is itself Lorentz covariant (see Appendix V)

EFIZEAR

2T




Properties of the Y matrices

- From the properties of the & and ﬁ matrices (D2)-(D4) immediately obtain:

(PP =p*=1 and (V') =Pafoy = —aBpor=—af = -1
* The full set of relations is (}p)z I

FP=PP=P)P = -
Y'Y +yyY = 0
Y'Y +7y 0 (j#k)

which can be expressed as:
{Yua'}’v} - )’“}'V -1 }’VY’“ = 2g“v (defines the algebra)

« Are the gamma matrices Hermitian?

¢ P is Hermitian so Y’ is Hermitian.
¢ The ¢ matrices are also Hermitian, giving

Y= (Bo)' =oip =ap =—Bo,=-7y

¢ Hence y', }'2, };‘ are anti-Hermitian

}[H'z},()’ YHZ_YI’ .},2'3‘:_},2’ }'3-;-=_73




Pauli-Dirac Representation

* From now on we will use the Pauli-Dirac representation of the gamma matrices:

( ) s Y= ( %'L %’f ) which when written in full are

10 00 0 001 000 -i 001 0
(o1 00)\ o, (o010 - (00i0) 5 [ 000-I
“1o00-1 07" =L 0-100):7Y=10i00])*"=(-1000
00 0-1 1 000 000 010 0

» Using the gamma matrices p = W%W and f= l[l"L(-ilV can be written as:

J*=(p.J) =¥ Py

where j* is the four-vector current.

(The proof that j* is indeed a four vector is given in Appendix V.)

* In terms of the four-vector current the continuity equation becomes

* Finally the expression for the four-vector current
. o + )
M=y

can be simplified by introducing the adjoint spinor




The Adjoint Spinor

* The adjoint spinor is defined as

v=y'y

0 0
1 0
0 -1
0 0

0
ie. W=y 0
]

|

%\ | * . B . O
(v =(vi, v w35, v0) | o
0

v o= (y,v.—vy3,—yy)

- In terms the adjoint spinor the four vector current can be written:
F=yrty

* We will use this expression in deriving the Feynman rules for the
Lorentz invariant matrix element for the fundamental interactions.

% That’s enough notation, start to investigate the free particle solutions
of the Dirac equation...




Dirac Equation: Free Particle at Rest

* Look for free particle solutions to the Dirac equation of form:
v = u(E, p)eP7ED

where u(ﬁ,E) , Which is a constant four-component spinor which must satisfy
the Dirac equation .
iy —m)y =0

» Consider the derivatives of the free particle solution
Iy Iy .
a()u[: — :—[Ell/; alw: —_ :[p-‘.w’
ot dx

substituting these into the Dirac equation gives:

(Y’E —y'pc— ¥’py— ¥’p: —m)u=0
which can be written: (Y pu —m)u=0 (D10)

* This is the Dirac equation in “momentum” — note it contains no derivatives.

- For a particle atrest p =0 and y = u(E,0)e £
eq. (D10) — E}/)u —mu = ()




10 0 0O (0 0
01 0 0 0| (023
= Elo0-10]|os] =™\ (D11)
00 0-1 04 04
* This equation has four orthogonal solutions:
1 0 0 0
uy(m,0) = 8  uz(m,0) = (l)  uz(m,0) = ? s ug(m,0) = 8
0 0 0 1
— o~ — — " —
(D11) mp [E=m (D11) = |F = -
still have NEGATIVE ENERGY SOLUTIONS
* Including the time dependence from Y = u(E,0)e'F! gives
] 0 0 0
Y = 8 e—imt; Y = (]) e—imt; Y3 = (]) e+imt; and Yy = 8 e+imt
0 0 0 1
Two spin states with E>0 Two spin states with E<0

% In QM mechanics can’t just discard the E<0 solutions as unphysical
as we require a complete set of states -i.e. 4 SOLUTIONS




Dirac Equation: Plane Wave Solutions

- Now aim to find general plane wave solutions: ¥ = u(E, p)e'P"~El)
- Start from Dirac equation (D10): (Y* py —m)u =0

and use }ﬂ“pu —-—m = Eyo = p_\-'y' = p).yz = p:f —m

= ((I) _OI)E—(_Oa, g).ﬁ—m((]) (]))

B (E B ’n)l _6.1-7' NOte ..............................................................................
o aﬁ —(E + nz)[ e R VEYY T HSTE

Note in the above equation the 4x4 matrix is
written in terms of four 2x2 sub-matrices

spinor as

ou-mi=o = (520 520 ()= ()

Giving two coupled (6.p)ug = (E—m)uy }
p

* Writing the four component - u,\>

simultaneous equations .
for U4, Up (6.p)ux = (E+m)ug




Expanding G.p= ((l) (]) p.\.+((3 _(;)P_v'*'((]) _(1)) .
= 75— Pz Px — ipy
C-P= (p.‘-+zpy ~p: )
* Therefore (D12) (6.p)ug = (E—m)uy
(6.p)us = (E+m)up
- — 643 _— | P: px_jpy)
gives BT Erm T E+m (P.r +ipy —p; )"

 Solutions can be obtained by making the arbitrary (but simplest) choices for 4

i.e. Up = ((])) or Up = (?)

1 0
o 0 1 where N is the
giving u) = N El’: v and  wuy = No | pe—ipy wave-function
+m » . .
Patipy 1:_1;)':" normalisation
E+m E-+m

NOTE: For p =0 these correspond to the E>0 particle at rest solutions

% The choice of U, is arbitrary, but this isn’t an issue since we can express any
other choice as a linear combination. It is analogous to choosing a basis for
spin which could be eigenfunctions of §,, S, or S,



. ] 0
Repeating for up = (0) and uUp = (1> gives the solutions 43 and uy4

* The four solutions are: y; = u;(E,p)e’ i(p.r—Et)

] 0 Pz Px—ipy
E—~m E—m
0 ] px+ipy = p:
uy =N, Pz | wa=No| px—ipy |3 us=N3| E-m |; ug=Ny| E-m
E+m E+m | 0
PxTipy —p- 0 1
E+m E+m

* If any of these solutions is put back into the Dirac equation, as expected, we obtain
2

Pa— ['52 +"12
which doesn’t in itself identify the negative energy solutions.

_* One rather subtle point: One could ask the question whether we can interpret

~ all four solutions as positive energy solutions. The answer is no. If we take ,
all solutions to have the same value of E, i.e. E = +|E|, only two of the solutlons

~are found to be independent. |

*» There are only four independent solutions when the two are taken to have E<0

% To identify which solutions have E<0 energy refer back to particle at rest (eq. D11)

*For p=0 u;, uz correspond to the E>0 particle at rest solutions
u3, us correspond to the E<0 particle at rest solutions

% So uj, up are the +ve energy solutions and u3, us4 are the -ve energy solutions ‘



Interpretation of —ve Energy Solutions

% The Dirac equation has negative energy solutions. Unlike the KG equation
these have positive probability densities. But how should —ve energy
solutions be interpreted? Why don’t all +ve energy electrons fall into
to the lower energy —ve energy states?

Dirac Interpretation: the vacuum corresponds to all —ve energy states

being full with the Pauli exclusion principle preventing electrons falling into
-ve energy states. Holes in the —ve energy states correspond to +ve energy
anti-particles with opposite charge. Provides a picture for pair-production
and annihilation.

y—e et e et —y

me2 | —— 0 Lo T S — mc2 | =—
n W A Y J
-mc2 — ——0— _m‘;l‘zll-‘_._._ _mc2 - —‘ﬁj—i;
— o N e Y
——o— ——o— ——o—
———o— ——o— ——o—
——o— ———o— —— o —



Discovery of the Positron

* Cosmic ray track in cloud chamber: C.D.Anderson, Phys Rev 43 (1933) 491
\

« e* enters at bottom, slows down in the
lead plate — know direction

« Curvature in B-field shows that it is a
positive particle

- Can’t be a proton as would have stopped in the lead

© Copyright Califernia nstitute of Techaolegy. All rights reserved.
Commereial wse or madification of this material is prohibited.

mm) Provided Verification of Predictions of Dirac Equation

Positronium (an atom made up of electron and positron) was discovered by Martin Deutsch in 1951.

* Anti-particle solutions exist ! But the picture of the vacuum corresponding to
the state where all —ve energy states are occupied is rather unsatisfactory, what
about bosons (no exclusion principle),....



Feynman-Stuckelberg Interpretation

% There are many problems with the Dirac interpretation of anti-particles
and it is best viewed as of historical interest — don’t take it too seriously.

Feynman-Stuckelberg_Interpretation:

Interpret a negative energy solution as a negative energy particle which
propagates backwards in time or equivalently a positive energy anti-particle
which propagates forwards in time

\ €~ (E<0) e’ (E>0)
bt bt
e** = * e -

E=>0 E<O e~ (E~0) e~ (E~0)

time

e—i(—E)(—t) — e lET NOTE: in the Feynman diagram the arrow on
the anti-particle remains in the backwards in
time direction to label it an anti-particle

solution.

% At this point it become more convenient to work with anti-particle
wave-functions with £ — \/ |p|>+m? motivated by this interpretation




Anti-Particle Spinors

- Want to redefine our —ve energy solutions such that:E = |\/|p|? + m?|
i.e. the energy of the physical anti-particle.

We can look at this in two ways:

0 Start from the negative energy solutions

Pz Px—ipy

E—m E—m
Px+ipy —Ps .
uy =Nz | E=m |: e Where E is understood to

s Uy =Ny E—m
0

be negative

0 1

« Can simply “define” anti-particle wave-function by flipping the sign
of E and p following the Feynman-Stiickelburg interpretation:

\’|(E,ﬁ)e_i(’7'F—E’) = us(—E,—p)e i(p.r—Et)
vo(E, p)e {(PT—El) = ys(—E, —p)eiPT—Et)

where E is now understood to be positive, E = |\/|p|? +m?|



Anti-Particle Spinors

the form: y = v(E,p e~ PT-El) where FE — |\/|p*|2 +m?|

* Note that although E > () these are still negative energy solutions

in the sense that Hv, = i—v| = —Ev,

dt
* Solving the Dirac equation (i’}’“ 8u — m) y=0

= (—YE+Y pc+7py+1p.—my=0

(Ypu+m)v=0 (D13)
* The Dirac equation in terms of momentum for ANTI-PARTICLES (c.f. D10)
- Proceeding as before:  (G.p)va = (E—m)vg } etc., ...
(6.p)vg = (E+m)vy

Px—ipy E_L

e prtipy
=) V) = N{ Eam N V) = Né E4l»m

1 0

*The same wave-functions that were written down on the previous page.



Particle and anti-particle Spinors

* Four solutions of form: y; = u;(E, p)e!P7—E1)

I 0 — Px—ipy
E—~m E~m
0 | PxHipy p:
uy =N Pz s Wx=N| p=ipy |, us=N)| E-m |; ua=N| E-m
E+m E+m I 0
Px¥ipy =Pz 0
E+m E+m |
— _ — _
—
E= +|\/|I’| +m? —‘\/lﬁ|2+m2‘

* Four solutions of form y; = v;(E, p)e (P El)

Px—ipy Pz ]
Ty E+m
5 +p'-" px+ipy 0
vi=N)]| Eim |, vo=N| E+m |, vy=N P; s Vg = Px—ipy ll’\
0 I E—m F —m
0 Px+ipy
1 E—m m
_/ —

E=+|\/|i5|2+m2 Ez_‘\/lplz_,_mb
% Since we have a four component spinor, only four are linearly independent
= Could choose to work with {u,us,u3,us} or {vy,va,v3,v4} or...
= Natural to use choose +ve energy solutions
{ur,uz,vi,v2}




Wave-Function Normalization

* We want to normalize wave-functions

to 2FE particles per unit volume

i

1

Pz
E+m
Pxtipy

E+m

b
/

* Consider y = u|e+i(ﬁ.?—E1) uy =N
Probability density p =y y = (y*) Ty =ulu
2 .
i 2 P; Px + Dy
= |[N|“|1 =~ '
it N ( N (E +m)? i (E+m)2>
> ((E+m)?+|p|? > ((E+m)>+E? —m?
- |N| - |N| 3
(E +m)? (E+m)?
~ NP 2E*+2Em — IN|? 2E
- (E+m)? "' E4m
which for the desired 2E particles per unit volume, requires that
N=+VE+m

* Obtain same value of N for uy, usz, vy, v




Charge Conjugation

* In the Relativity and Electrodynamics course it was shown that
the motion of a charged particle in an electromagnetic field A* = (¢, A)
can be obtained by making the minimal substitution

p—p—eA; E—E—e
with p=—iV; E=id/dt
this can be written Oy — Iy +ieAy

and the Dirac equation becomes:

Y (Oy +ieAy )y +imy =0

» Taking the complex conjugate and pre-multiplying by —i}'z
e e A ) —ieAu)lV* —my*y* =0
But Y =9 Y=y ¥ =—y* =9 and py=_py
—> V(9 — ieAy)iy> y* +imiy* y* =0 (D14)
‘Define the charge conjugation operator:
y' =Cy =iyy"
D14 becomes: },u(au _ ieAp)l[l’ + iml;/' =)




D14 becomes: | Y*(dy —ieAy )y +imy’ =0

« Comparing to the original equation

we see that the spinor ly’ describes a particle of the same mass but with
opposite charge, i.e. an anti-particle !

A

C ™ |particle spinor < anti-particle spinor

- Now consider the action of C on the free particle wave-function:
W = u et(ﬁ? Et)

y' =Cy = iy’ y* = iytute~i(PT-Er)
* Px—ipy
000 -i h o
I}"'Ml =1 8 ¥ (; 8 E+’" - - =VE+m E+m = V]
[ E+m 0O
<000 [h*H[)\ I
A "E+m
i(p.7 C .
hence Y = llle p.r—Et) —) w =€ i(p.r—Et)

% Under the charge conjugation operator the particle spinors 1 and u»
transform to the anti-particle spinors vi andv;



Using the anti-particle solutions

*There is a subtle but important point about the anti-particle solutions written as
Y = V(E, I-)')e—i(f)'.?—El)
Applying normal QM operators for momentum and energy p = —iV, H = id /ot
gives ﬁw =idvy/dt = —Ev, and pv) = —i%w = —pV]

Y But have defined solutions to have E>0

* Hence the quantum mechanical operators giving the physical energy and
momenta of the anti-particle solutions are:

A

AY) = _ig/9r and p) =iV
+ Under the transformation(E,p) — (—E,—p): L=FAp — —L

Conservation of total angular momentum [H,L+5] =0 == [§(V) _, _§

% The physical spin of the anti-particle solutions is given by §0v) = _§
0 :
A spin-up hole leaves the
In the hole picture: -mc¢2| —o—— negative energy sea in a spin
down state
——4—

'



Summary of Solutions to the Dirac Equation

 The normalised free PARTICLE solutions to the Dirac equation:
w = u(E,p)et(PT-E1)  satisfy (Ypu—mu=0

with 1 0
(1) (0
uy=vE+m)| _pz |; up =E+m| px—ipy
E+m E+m
Px TPy / —P: }
E-+m E+m
* The ANTI-PARTICLE solutions in terms of the physical energy and momentum:
y =v(E,p)e "PTE)  gatisfy (Ypu+m)yv=0
. Px—ipy _Pz
with Efm pr i{;; |
vi =vVE+m Eafn : vo =VE +m E4l-m
| 0
For these states the spin is given by §(¥) = —§

* For both particle and anti-particle solutions: F = \/|p’|2 +m?



Spin States

* In general the spinors u|,u2,Vv|,V2 are not Eigenstates of 5‘3

1 00 0
$ 1y _1(0; 0 110-=100 (Appendix I1)
:=2%=2\ 00, )20 010
0 0 0 -1
* However particles/anti-particles travelling in the z-direction: p; = :i:lﬁ
1 0 0 +_|I’l_\
() | ilﬂ. m
uy=N| £|p| |3 u2=N 0 : vi=N Eé)m T Vg =
E+m ¥ pl
6 Edm 1 0 )
are Eigenstates of .
8, —al "S I  N— T | Note the change of sign
S:HI = 2t S” S:vl T 2V of § when dealing with
-§'~llz — %llz £‘)‘,2 — _5'4,2 — -%V2 antiparticle spinors
- <= —) <= —) <= —) <=
> _ —> > < < < <
U u» V] V2 U u» V] V2
)Z )Z

% Spinors uj,u2,v|,v2 are only eigenstates of ~§z for P; = i|ﬁ| .
33



Pause for Breath...

* Have found solutions to the Dirac equation which are also eigenstates .SA'N but
only for particles traveling along the z axis.

* Not a particularly useful basis

* More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of commuting observables.

- Can’t use z component of spin: [1:1,5';] # 0 (Appendix Il)

* Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows




Helicity

% The component of a particles spin along its direction of flight is a good quantum
number:

(H,5.p] =0
% Define the component of a particles spin along its direction of flight as HELICITY:
. S.p _ 28.p _ >.p
S||pl 12l 1P
* If we make a measurement of the component of spin of a spin-half particle

along any axis it can take two values +1/2 , consequently the eigenvalues
of the helicity operator for a spin-half particle are: 41

/7 'y

h=+1 h=—1
Often termed:  “right-handed” “left-handed”

% NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
% In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit
v~ ¢ arethe HELICITY eigenstates the same as the CHIRAL eigenstates




Helicity Eigenstates

% Wish to find solutions of Dirac equation which are also eigenstates of Helicity:
(Z.p)ur = +uy (Z.p)uy = —u,

where U and u| are right and left handed helicity states and here p is
the unit vector in the direction of the particle.

» The eigenvalue equation: [ 1[ ] []
The eigenvalue eq ( ;dﬁ 6(.);3) (uA) _ i(tm) ﬁ‘ﬁ “J

Up Up
ives the coupled equations: o.0\u = u
g pled eq (q p)ua A (D15)
(0.p)Jup = Zup
- Consider a particle propagating in (0,¢) direction /{
p = (sin@cos¢,sinOsin¢,cosB) Y . Z
& 5= ( » p_\.—ip,.) B ( cos6 sin 6 cos @ —isinGsind))
P=\ pe+ipy —p; )~ \sin@cos¢ +isinOsing —cos 6

G h= cosG_ sin@e 19
P sinB@e'® —cos@



* Writing either uy = (g) or uUg = (g) then (D15) gives the relation

cos@ sin@e ay a For helicity +1
(sinGe"p " coe )(b) —:t(b) (For helicity +1 )

So for the components of BOTH YA and UB

b +1 —cosG

* For the right-handed helicity state, i.e. helicity +1:
2 (0 0
b 1-cos@ ;5 2sin (%) e,¢_e¢sm(§)

a” ) ?)
)

a sin @ - 2sin(g)cos(g) cos (

COS 9
- () (o

 Putting in the constants of proportionality gives:
K cos (5

ue— (1A K1€'? sin (£
AN K> COS ( 7

K>€'? sin

AN S
—

Mlm\./tolmv

o —




‘From the Dirac Equation (D12) we also have

(6.p)us = (E+m)up
G.p Pl . 7|
Unr = — O. =% u (D16)
L E+m A E+m (J)HA E+m A
Helicity

% (D15) determines the relative normalisation of YA and UB , i.e. here

P
= +1
up =+ E+m

UA

¢ (-]
= u=N| 5 sin (2)
\_IL i S1

E+m

*The negative helicity particle state is obtained in the same way.

*The anti-particle states can also be obtained in the same manner although
it must be remembered that (V) = —§

ie. A =—(£p) == (Ep)v=—v



% The particle and anti-particle helicity eigenstates states are:

LV
h =

Llll
+1 /zz

-1

( cos (%) \ / fsin(g) \
| snl®) o e
Ur = 3] u, =
T |E||ITI cos (%3 : lls'i',,, sin () 9
) 1 .
£rme?sin(§)) —grge?cos(8) )
( El_;lir-lrrt sin (g) 0 \ /_IF_-}-m cos gg
S
Vi =N —Eitne.m(cg;(?) V| =N | E+m l¢(39)(§)
PU— n —
docos(3) | e*sin(?)
particles anti-particles

% For all four states, normalising to 2E particles/Volume again gives

=+vVE+m

* The helicity eigenstates will be used extensively in the calculations that follow.



Intrinsic Parity of Dirac Particles

% Before leaving the Dirac equation, consider parity hon-examinable

% The parity operation is defined as spatial inversion through the origin:

X=—x, yYy=—-y, d=-2z0 =t

-Consider a Dirac spinor, y(x, v,w,t) which satisfies the Dirac equation

13‘1’_'_1},2 _ _,-}p%_‘i’ (D17)
-Under the parity transformatlon l[/’(x' v,Z,t') = Py(x,y,z,t)
Iy P=y  YWy.2.) =1 y(xya)
()2 =1 so w(xyzt) =7y X,y,7,)

©17) = P2 sipp2l L ippP¥ py = ipp?¥
*Expressing derlvatlves in terms of the prlmed system:
sy ) Y W’
1}’)’(8 Y}" Yy = —iyy 3
Since YO anti-commutes W|th}’ ; }'2 }’3 .
oy’ o Y
. | 3
+iyy Py, —myol;/ i




Pre-multiplying by }'0 = z'y aqxfl’ +z}" aw,, +z}'3 aa‘V, —mV/ —z}p

Which is the Dirac equation in the new coordinates.

% There for under parity transformations the form of the Dirac equation is
unchanged provided Dirac spinors transform as

y — Py =47y |
(note the above algebra doesn’t depend on the choice of? = :t}'“ )
*For a particle/anti-particle at rest the solutions to the Dirac Equation are:

W = u e—m:t; Y= lee—nm; W = e+um; Y = ‘,ze+mu

8t’

l 0 0 0
with uy =N 8 y up=N (]) s i=N 8 y =N (I) )
0 0 | 0
10 0 0 1 ~ ~
pu=s (958 8] (8) = oo — | =u o mn
00 O -1 0 _ - _

% Hence an anti-particle at rest has opposite intrinsic parity to a particle at rest.
% Convention: particles are chosen to have +ve parity; corresponds to choosing

= 490




Summary

% The formulation of relativistic quantum mechanics starting from the
linear Dirac equation Iy

m=) New degrees of freedom : found to describe Spin 2 particles

% In terms of 4x4 gamma matrices the Dirac Equation can be written:

(i)#‘éhl-—-nq)yyw::()

% Introduces the 4-vector current and adjoint spinor:
TR =
M=y =ty

% With the Dirac equation: forced to have two positive energy and two
negative energy solutions

% Feynman-Stiickelberg interpretation: -ve energy particle solutions
propagating backwards in time correspond to physical +ve energy
anti-particles propagating forwards in time

uyp, u, vi, v2




% Most useful basis: particle and anti-particle helicity eigenstates

tq, uj VT, v V| > 4
/‘2'=+l %zz—l /h=+l yhz_l

% In terms of 4-component spinors, the charge conjugation and parity
operations are:

y — Cy =iyy’ y — Py =y

% Now have all we need to know about a relativistic description of
particles... next discuss particle interactions and QED.




Appendix | : Dimensions of the Dirac Matrices

Start ) o vy non-examinable
arting from Ay = (a.p+pm)y = =
For H to be Hermitian for all P requires o; = OC,-* B=p"
To recover the KG equation: o? = a? = a? = B = 1
B+ aB=0
ooy +ogo; =0 (j#k)
Consider Tr(B'AB) = B A;By;
with B'B = | = BuB[Aj
= OpAjk
= Tr(A)
Therefore Tr(a) = T"(a;aiaj)
= —Tr(a;ajai) (using commutation relation)
— —Tl'(a,')
= Trie;)) = 0
similarly Tr(B) = 0




We can now show that the matrices are of even dimension by considering
the eigenvalue equation, e.g. oX = AX

=X ax=A*AX"Y

Eigenvalues of a Hermitian matrix are real so A2=1 — A ==+1
but Tr(a) =Y;A

Since the ¢;,3 are trace zero Hermitian matrices with eigenvalues of
+1 they must be of even dimension

For N=2 the 3 Pauli spin matrices satisfy
O','O'j-l-O'jO',' = () (]751)

But we require 4 anti-commuting matrices. Consequently the @;, 3 of the

Dirac equation must be of dimension 4, 6, 8,..... The simplest choice for
is to assume that the o;,3 are of dimension 4.




Appendix Il : Spin

non-examinable
*For a Dirac spinor is orbital angular momentum a good quantum number?

i.e.does L=FAp commute with the Hamiltonian?

(H,L] = [&.p+Bm,FAP]
= [a.p,FAp|
Consider the x component of L:
[H,Ly] = [0.p,(FAP)]

— [t By + Cpype— 2y
The only non-zero contributions come from|x, p,] = [y, py| = [z, p;] =i

[H) Lx] =  Oyp; [17,.\’7)’] Oz Py [[’z: ~]
= —i(ayp; — a;py)
= —i(&AP)x
Therefore [H,L) = —it A p (A.1)

% Hence the angular momentum does not commute with the Hamiltonian
and is not a constant of motion




Introduce a new 4x4 operator:

= la 17060
S—iz—z(oa)
where & are the Pauli spin matrices: i.e.
0100 0 -0 O 1 00 O
y o 1000.2_ i 00 O y — 0-10 O
*— 410001 ) =10 00— ) *—= 10 01 O
0010 0 0:¢ O 0O 00 —1
Now consider the commutator
[H,%] = [6.p + Bm,Z]
I 0 c 0 c 0 I 0
here 8= (o - )(Oo>_<06)(0—1)=0
and hence H,Z] = [@.p,%]
Consider the x comp: [H,Z,] = [opi+oypy+ o p,, Ly

Px [axa Zx] T Py [aya Zx] + Pz [a:’ Z.\']




Taking each of the commutators in turn:

[0y, Ey

[0y, Ey

[0, Zy ]

Hence [H,L;]

(25)(58)-(5.8)(8%)-0

(6,5)(5 a) (5 a)(e T)

0 O0y0y — Oy 0y
Gy Oy — Oy G\
2ioy

P[0, x| + P)‘[a)‘? Y| + poog, 2]
_2ip_\"1.\' +2ip, oy
2((AP)x

[H,Z] = 2ic A p




*Hence the observable corresponding to the operator Y is also not
a constant of motion. However, referring back to (A.1)

P P 4
[H,8) = 5 [H,E] = i@ Ap=~[H,I]

Therefore: [H,L+S5] =
. s_1(6 0
Because S = ; ( 0 6)

the commutation relationships for S are the same as for the & , €.9.
[Sx,Sy] = iS; . Furthermore both S2 and S, are diagonal

1000 1 0 0 0
0100 0-10 0
P= 14+ =310010)5 =300 1 0
0001 0 0 0 —1
Consequently S%y = S(S+ 1)y ‘— and for a particle traveling along

the z direction S,y = :tzq/

% S has all the properties of spin in quantum mechanics and therefore the

Dirac equation provides a natural account of the intrinsic angular
momentum of fermions




Appendix lll : Magnetic Moment

non-examinable
* In the part Il Relativity and Electrodynamics course it was shown that
the motion of a charged particle in an electromagnetic fielA* = (¢,A)
can be obtained by makina the minimal substitution
pP—pP—qA; E—E—q¢
» Applying this to equations (D12)
(6.p—q6.Aug = (E—m—qd)uy (A.2)
(6.p—q6.A)usy = (E+m—qo)ug
Multiplying (A.2) by (E +m —q0¢)
(6.p—qG.A)(E+m—qd)up (E—m—q¢)(E+m—q@)us
(6.p—q0.A)(G.p—q0.Aux = (T—q0)(T+2m—qd)uy (A.3)
where kinetic energy 7’ = E —m
°In the non-relativistic limit 7 <m (A.3) becomes

—_— 3

(6.p—q6.A)(G.F—q0.Aux =~ 2m(T —qd)uy
[(6.,3)2—q(a.x)(a.ﬁ)—q(a.p')(a.A’)Jrqz(a.A)z]uA ~ 2m(T—qd)uy (A.4)




Now =7_ ([ A Ac—iA,
Now &A= ( 4 ya, " A

which leads to  (G.A)(6.B) =A.B+iG6.(A
and (0.A)" = |Z

= (P—qA)* —iqG. [”/\ﬁ+ﬁ/\A']

= (P—qA)*—4%G. [_' 64—6.;4'] p=—iV

= (P—qA)? —qB.(VAA) (VAA) W =V A(Ay) +AA (V)
= (p—qgA)*—q0.B B=VAA

% Substituting back into (A.4) gives the Schrodinger-Pauli equation for
the motion of a non-relativisitic spin 2 particle in an EM field

| — q -
] — 0. B+ =T
m —(pP—q ) m qo | ua = Tuy




] - " =
—(p—qA)* — i()'.B—I-q(p up = Tuy
2m 2m

a Since the energy of a magnetic moment in a field B is _;1,1’;' we can
identify the intrinsic magnetic moment of a spin ' particle to be:

i=Lls
2m
In terms of the spin: §= 16
p=13
m .

&P Classically, for a charged particle current loop y
q -t
= —0L
# 2m ®

& The intrinsic magnetic moment of a spin half Dirac particle is twice
that expected from classical physics. This is often expressed in terms

of the gyromagnetic ratio is g=2.

- q =
=g—39
H g2m

52




Appendix IV : Covariance of Dirac Equation

non-examinable
*For a Lorentz transformation we wish to demonstrate that the Dirac
Equation is covariant i.e.

iy oy =my (A.5)
transforms to iYLy = my’ (A.6)
where ’Ei=(a J 9 8)
“=oxm — \ o ax'’ 9y’ 97
and v/ (X') = Sy(x) is the transformed spinor.
*The covariance of the Dirac equation will be established if the 4x4 matrix

S exists.
*Consider a Lorentz transformation with the primed frame moving with

velocity U along the x axis
dy = A}y
where
Yy —Br00
A= 767 § 10
0 0O O1




With this transformation equation (A.6)
ivo,w = my
= iYYAVI Sy = mSy
which should be compared to the matrix S multiplying (A.5)
iISYH oy = mSy

% Therefore the covariance of the Dirac equation will be demonstrated if
we can find a matrix S such that

iy Ay oSy = iSYouy
= YAShy = SYrouy

= |Sp* = y'sAl (A7)
Considering each valueof u=0, 1, 2, 3
] A
sy = r's-Br's where y=(1-B2)"1/2
S}" = —ﬁ)’YOS-l- }'}"S > and B=v/c
2 .
Sy = rS§
S}'s = st- J




*It is easy (although tedious) to demonstrate that the matrix:

S=al+bY’y!| with |a=\/i(y+1), b=\/i(r-1)

satisfies the above simultaneous equations

NOTE: For a transformation along in the —x directiol? = — \/%(7— 1)

% To summarise, under a Lorentz transformation a spincy(x) transforms
to y'(x') = Sy(x) . This transformation preserves the mathematical
form of the Dirac equation




Appendix V : Transformation of Dirac Current

non-examinable
% The Dirac current j* = yy*y plays an important réle in the description
of particle interactions. Here we consider its transformation properties.

‘Under a Lorentz transformation we havey’ = Sy

and for the adjoint spinor: ¥/ = y/'"y? = Sy = l/l TsTyp
*First consider the transformation properties of /'y’

vy =yl sy
where ST = al+b}""'}m = al — by )/0
giving  §YS = (al —by'Y°)Y(al + YY)
= a7y -b’ Y'Y"Y"}"’y +aby"¢’7 -by' Y’
= a° }p+b YO }}) +a1)y —aby'
= (a*-b*)y°

hence vy =y STYSy =y Py =yy
% The product yy is therefore a Lorentz invariant. More generally, the
product vy, y, is Lorentz covariant




*Now consider ju — yiyiy/
= (y's"Y)rsy
To evaluate this wish to express y*S in terms ofSy*
(A.7) St = y'SAM

- SY'AL = 7SAY AL = 7'S8) = yPS
where we used AYAf = &)
‘Rearranging the labels and reordering gives:

S = Ay Sy
o= (¢S Sy = yiSTY (AVSY )y
= AW STy =A vy Yy
AYY Y = Ay
- vy =AYy

*Hence the Dirac current, YY" v |, transforms as a four-vector
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