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Quantum Mechanics
• Group operations represented by unitary operators (   ) in a 
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Quantum Field Theory
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Internal Symmetry
• Symmetries whose transformation parameters do 

not affect the point of space and time x

• It is more natural in QM and QFT. For example, the 
phase of the wave function. Equation of Motion 
(Dirac or Schrodinger), normalization condition are 
invariant under the transformation:

• It implies the conservation of the probability 
current.
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Heisenberg Isospin Theory 
• Assume the strong interaction are invariant under a group 

of SU(2) transformation in which the proton and neutron 
form a doublet N(x)

tury we were led to consider two abstractions, each one of which has had a
profound influence in our way of thinking the fundamental interactions. Re-
versing the chronological order, we shall introduce first the idea of internal
symmetries and, second, that of local or gauge symmetries.

3.2 Internal symmetries

We call internal symmetries those whose transformation parameters do not
affect the point of space and time x. The concept of such symmetries can
be presented already in classical physics, but it becomes natural in quantum
mechanics and quantum field theory. The simplest example is the phase of
the wave function. We know that it is not a measurable quantity, so the
theory must be invariant under a change of phase. This is true for both
relativistic or non-relativistic quantum mechanics. The equations of motion
(Dirac or Schrödinger), as well as the normalisation condition, are invariant
under the transformation:

Ψ(x) → eiθΨ(x) (6)

The transformation leaves the space-time point invariant, so it is an in-
ternal symmetry. Through Noether’s theorem, invariance under (6) implies
the conservation of the probability current.

The phase transformation (6) corresponds to the Abelian group U(1). In
1932 Werner Heisenberg enlarged the concept to a non-Abelian symmetry
with the introduction of isospin. The assumption is that strong interactions
are invariant under a group of SU(2) transformations in which the proton
and the neutron form a doublet N(x):

N(x) =

(

p(x)
n(x)

)

; N(x) → eiτ⃗ ·θ⃗N(x) (7)

where τ⃗ are proportional to the Pauli matrices and θ⃗ are the three angles
of a general rotation in a three dimensional Euclidean space. Again, the
transformations do not apply on the points of ordinary space.

Heisenberg’s iso-space is three dimensional, isomorphic to our physical
space. With the discovery of new internal symmetries the idea was gen-
eralised to multi-dimensional internal spaces. The space of Physics, i.e.
the space in which all symmetry transformations apply, became an abstract
mathematical concept with non-trivial geometrical and topological proper-
ties. Only a part of it, the three-dimensional Euclidean space, is directly
accessible to our senses.
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Global Symmetry
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Figure 1: A space translation by a constant vector a⃗

3.3 Gauge symmetries

The concept of a local, or gauge, symmetry was introduced by Albert Ein-
stein in his quest for the theory of General Relativity1. Let us come back to
the example of space translations, as shown in Figure 1.

The figure shows that, if A is the trajectory of a free particle in the
(x,y,z) system, its image, A’, is also a possible trajectory of a free particle
in the new system. The dynamics of free particles is invariant under space
translations by a constant vector. It is a global invariance, in the sense that
the parameter a⃗ is independent of the space-time point x. Is it possible to
extend this invariance to a local one, namely one in which a⃗ is replaced by
an arbitrary function of x; a⃗(x)? One calls usually the transformations in
which the parameters are functions of the space-time point x gauge transfor-
mations2. There may be various, essentially aesthetic, reasons for which one
may wish to extend a global invariance to a gauge one. In physical terms,
one may argue that the formalism should allow for a local definition of the
origin of the coordinate system, since the latter is an unobservable quantity.
From the mathematical point of view local transformations produce a much
richer and more interesting structure. Whichever one’s motivations may be,
physical or mathematical, it is clear that the free particle dynamics is not
invariant under translations in which a⃗ is replaced by a⃗(x). This is shown
schematically in Figure 2.

1It is also present in classical electrodynamics if one considers the invariance under
the change of the vector potential Aµ(x) → Aµ(x)− ∂µθ(x) with θ an arbitrary function,
but before the introduction of quantum mechanics, this aspect of the symmetry was not
emphasised.

2This strange terminology is due to Hermann Weyl. In 1918 he attempted to enlarge
diffeomorphisms to local scale transformations and he called them, correctly, gauge trans-

formations. The attempt was unsuccessful, but, when in 1929 he developed the theory for
the Dirac electron, although the theory is no more scale invariant, he still used the term
gauge invariance, a term which has survived ever since.
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A’ is also a possible trajectory of a free particle in the new system 

The dynamics of free particles is invariant under 
space translations by a constant vector



Gauge Transformation
The transformation parameters are functions 

of the space-time point x
A free particle dynamics is not invariant under translations 
in which    is replaced by        .~a

~a(x)
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Figure 2: A space translation by a vector a⃗(x)

We see that no free particle, in its right minds, would follow the trajec-
tory A”. This means that, for A” to be a trajectory, the particle must be
subject to external forces. Can we determine these forces? The question
sounds purely geometrical without any obvious physical meaning, so we ex-
pect a mathematical answer with no interest for Physics. The great surprise
is that the resulting theory which is invariant under local translations turns
out to be Classical General Relativity, one of the four fundamental forces
in Nature. Gravitational interactions have such a geometric origin. In fact,
the mathematical formulation of Einstein’s original motivation to extend the
Principle of Equivalence to accelerated frames, is precisely the requirement
of local invariance. Historically, many mathematical techniques which are
used in today’s gauge theories were developed in the framework of General
Relativity.

The gravitational forces are not the only ones which have a geometrical
origin. Let us come back to the example of the quantum mechanical phase.
It is clear that neither the Dirac nor the Schrödinger equation are invariant
under a local change of phase θ(x). To be precise, let us consider the free
Dirac Lagrangian:

L = Ψ̄(x)(i∂/ −m)Ψ(x) (8)

It is not invariant under the transformation:

Ψ(x) → eiθ(x)Ψ(x) (9)

The reason is the presence of the derivative term in (8) which gives rise
to a term proportional to ∂µθ(x). In order to restore invariance, one must
modify (8), in which case it will no longer describe a free Dirac field; invari-
ance under gauge transformations leads to the introduction of interactions.
Both physicists and mathematicians know the answer to the particular case
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Symmetry= Force
Neither Dirac nor Schrodinger equation are 
invariant under a local change of phase 

✓(x)

Free Dirac Lagrangian 

is not invariant under the transformation
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In order to restore invariance, we must modify free Dirac 
Lagrangian such that it is no longer describe a free Dirac 
Field. 
    Invariance under gauge symmetry leads to 

the introduction of interactions.



Weyl’s Gauge Transformation
Soon after GR was written by Einstein, 
Weyl proposed a modification …

He added invariance with respect to 

a)

b)

g
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0
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@x

µ

same         phase
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b) is the regular ambiguity required of EM potentials

a) is weird ds
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Lengths are  
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Weyl’s Gauge Transformation
• suggests an invariance even though space & time 

can change over all space and time

• the mediator which holds the space-time structure 
together would be the electromagnetic field

An early attempt to unify gravitation with electromagnetism

The brilliant idea did not work but the name stuck.

In 1927 London revived the idea … but the symmetry isn’t 
the scale of space-time, rather the phase of the wave function. 
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Global versus Local
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76 Fundamental Forces of Nature: The Story of Gauge Fields

Global U(1) gauge
transformation

Local U(1) gauge
transformation

Fig. 7.4 Global and local gauge transformations. Left panel: in a global
gauge transformation, the quantum phase change is the same at all space-
time points. Right panel: in a local gauge transformation, the quantum
phase can have arbitrary independent values at different space-time points,
but it is correlated with the gauge field, whose gauge function (position on
its fiber) keeps track of the phase.

For example, suppose there were no electromagnetic coupling.
Then, we are free to call the electron charge negative or positive
on Earth, but the same convention must be adhered to on Mars.

With local gauge invariance, which requires the presence of a
gauge field, the convention for charge becomes a purely local mat-
ter. An observer on Mars can define an electron as positive, while
on Earth we continue to regard it as negative. When the Mars ob-
server sends us an electron, it interacts with ours correctly, because
the interaction occurs through the gauge field, which keeps track of
the local protocols.

Local gauge invariance frees us from the last vestige of “action at
a distance”.
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SU(2): Global versus Local
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Yang–Mills Field: Non-Commuting Charges 89

Global SU(2) gauge
transformation

Local SU(2) gauge
transformation

Fig. 9.3 In a global SU(2) gauge transformation, symbolic gyroscopes
attached to points of space-time rotate in unision. In a local transformation,
they rotate independently, but three gauge fields undergo correlated gauge
transformations. The latter is indicated by the positions of three beads on
a fiber. Compare with Fig. 7.4.

not gauge invariant. In fact, there is no gauge-invariant field tensor.
The next best thing is to consider the “gauge covariant” quantity

Fµν = ∂µAµ − ∂νAµ + ig [Aµ, Aµ] ,

where Fµν = Fµν
a La. By gauge covariant we mean that it transforms

according to the adjoint representation of the gauge group. This turns
out to be the correct choice for field tensor.

Yang had searched for this tensor without success since his student
days in 1947. As he recalls3:

I was clearly focusing on a very important problem. Unfortu-
nately the mathematical calculations always ended in more and
more complicated formulas and total frustration. It was only in
1953–1954, when Bob Mills and I revisited the problem and tried
adding quadratic terms to the field strength Fµν that an elegant
theory emerged. For Mills and me it was many years later that
we realized the quadratic terms were in fact natural from the
mathematical point of view.

3C. N. Yang, in 50 Years of Yang–Mills Theory, ed. G. ’t Hooft (World Scientific,
Singapore, 2005), p. 7.


