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Parity
% The parity operator performs spatial inversion through the origin:
A ""(5"1’2 = 13‘1’@’2 = y(—%,1)
applying P twice: PPy (X,t) = Py(—X,t) = y(X,t)
so PP=] = pl_p

To preserve the normalisation of the wave-function

Al A

(vly) = (y'|y') = (y|P"Ply)
ptp—=] = P Unitary
e But since pp —7 p—pt = P Hermitian

which implies Parijty is an observable quantity. If the interaction Hamiltonian
commutes with P |, parity is an observable conserved quantity

o If l;l(f,t) is an eigenfunction of the parity operator with eigenvalue P
A - - A A -—p ol — 9) —
Py(X,1) =Py(x,t) =  PPy(Xt)=PPy(X,t) =P y(Xt1)
since PP=7] and P> =1 = Parity has eigenvalues P = +1

% QED and QCD are invariant under parity
% Experimentally observe that Weak Interactions do not conserve parity



Intrinsic Parities of fundamental particles:

Spin-1 Bosons

From Gauge Field Theory can show that the gauge bosons have P —=
Py:Pg:PWé ZP‘V :P7:—l

Spin-"2 Fermions

From the Dirac equation showed:
Spin 2 particles have opposite parity to spin %z anti-particles
Conventional choice: spin 'z particles have P = +1
P,- :PN‘ = Pp- =Fy =Pq=+l
and anti-particles have opposite parity, i.e.
o+ =Pu+ = P+ :PV=P(7:—]
% For Dirac spinors it was shown that the parity operator is:

100 0
A 01 0 0
P=Y=100-1 0

00 0 -1




Parity Conservation in QED and QCD

Consider the QED process € = €7( e- Pi 1 P3 o
The Feynman rules for QED give: t
: _ . —i8uv _ :
—iM = [i,(p3)ieY" ue(p1)] q—f' [iig(pa)iey uy(p2)]
P2
which can be expressed in terms of the electron and P4
quark 4-vector currents: q 4 q

e’ e’

M = —?Sungjc\; = —?jé“jq
with je =Ue(p3) Y ue(p1) and  jg = Ug(pa) Y uq(p2)

% Consider the what happen to the matrix element under the parity transformation

¢ Spinors transform as P A
P u— Pu=u

¢ Adjoint spinors transform as
= 'y P (Pu)T 9P = w190 = 99 — iy
N uy

¢ Hence Je =t (p3) Y ue(p1) L Ee(l’3)}/)7” 70“6(171)




% Consider the components of the four-vector current

0:] ;9 L, PP u = uyu = j° since 0y = |
k=1,2,3: jf‘ LN H}p}*)"u = —E}*}’“}’"u = —E}"’u = —jf,' since Yy = —pfy0

The time-like component remains unchanged and the space-like components
change sign

i p x P & L
Similarly jo—Jo Jé — —J(’; k=1,2,3 or jt—j,

d RY P . .
.35 —  u-dv

Y

p
- 1]

% Consequently the four-vector scalar product

Je-dg = Jodg— Jeiy — Jedg — (—Jje)(=J5) = Je-dg k=13

QED Matrix Elements are Parity Invariant

mm) [Parity Conserved in QED

% The QCD vertex has the same form and, thus,

Parity Conserved in QCD




Parity Violation in 3-Decay

% The parity operator P corresponds to a discrete transformation x — —X, elc.

% Under the parity transformation:

Vectors
change sign

Axial-Vectors
unchanged

<

N
r—— —r
-~ P . p) :
p— —p (px = £, etc. No_teBls an
S o P oo . - axial vector
L—L (L=7FAP) dB o TAFA3F
— p — — -4
| L — 1 (o< L)

% 1957: C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:
6()CO _,60 Ni* e~ +V(’
Observed electrons emitted preferentially in direction opposite to applied field

Ky

o

ii

(E,p) p If parity were conserved:
B — 5 B expect equal rate for
(E,—p) producing e~ in directions
| along and opposite to the
. nuclear spin.
more e-in cf. »~

% Conclude parity is violated in WEAK INTERACTION
= that the WEAK interaction vertex is NOT of the form ﬁe}"" Uy




Bilinear Covariants

% The requirement of Lorentz invariance of the matrix element severely restricts
the form of the interaction vertex. QED and QCD are “VECTOR” interactions:

M=y
This combination transforms as a 4-vector

% In general, there are only 5 possible combinations of two spinors and the gamma
matrices that form Lorentz invariant currents, called “bilinear covariants”:

Type Form Components “Boson Spin”
¢ SCALAR v 1 0
¢ PSEUDOSCALAR VY ¢ 1 0
¢ VECTOR yyH o 4 1
¢ AXIAL VECTOR yyH y5¢ 4 1
¢ TENSOR V('Y —v'y")o 6 2

% Note that in total the sixteen components correspond to the 16 elements of
a general 4x4 matrix: “decomposition into Lorentz invariant combinations”

% In QED the factor Suv arose from the sum over polarization states of the virtual
photon (2 transverse + 1 longitudinal, 1 scalar) = (2J+1) + 1

% Associate SCALAR and PSEUDOSCALAR interactions with the exchange of a
SPIN-0 boson, etc. — no spin degrees of freedom



V-A Structure of the Weak Interaction

% The most general form for the interaction between a fermion and a boson is a
linear combination of bilinear covariants

% For an interaction corresponding to the exchange of a spin-1 particle the most
general form is a linear combination of VECTOR and AXIAL-VECTOR

% The form for WEAK interaction is determined from experiment to be
VECTOR - AXIAL-VECTOR (V-A)

e- Pl i P3 v | -
Tt ey, (P =YY ue
v V-A
% Can this account for parity violation?

% First consider parity transformation of a pure AXIAL-VECTOR current
A=VFTe  with P iy Ry PP =Py
in =Y — VPV = PP r e
B=" P71 =—vPro =13

=YY=+ vVro=+ii k=123 |or L _j.




* The space-like components remain unchanged and the time-like components
change sign (the opposite to the parity properties of a vector-current)

0 P 0. &« P & . 0 P 0. &« P &
JA *—Jas JA > +Jas Jv >+ Jys v »—Jy

* Now consider the matrix elements

Mo gyt ¥ =88 - Y, it
k=1.3

* For the combination of a two axial-vector currents
. P 0 0 ks ok .
jar-jaz — (—ji)(—jz) — 2 (J1)(12) = Jar-ja
k=13

e Consequently parity is conserved for both a pure vector and pure axial-vector
interactions

e However the combination of a vector current and an axial vector current
. P .0 0 ke /oK ..
Jvidaz — (Ji)(—Jz) — Z (—/1)(2) = —Jjvi-ja
k=13
changes sign under parity — can give parity violation !



% Now consider a general linear combination of VECTOR and AXIAL-VECTOR
(note this is relevant for the Z-boson vertex)

Vi T o (1= O, (evr* +ea?r)vi = gvJ| +8aji
Suv
< g2 — m>
V2 v 0\ p=0(evr* +ea¥' Y )Va=gvi; +8ajs

My o< ji.jo =8y Jy -J5 +8&aJt-J5 +avea(iy - Jj3 + ji.Jy)
Consider the parity transformation of this scalar product
. s P 2 W o A s WV o A 2V
Ji-j2 = 8y iy -Js +&ait-J5 —8vea(jy -j5 + Jt-Jy)

- If either g, or g, is zero, Parity is conserved, i.e. parity conserved in a
pure VECTOR or pure AXIAL-VECTOR interaction

8VEA

2 2
8v T84
Maximal Parity Violation for V-A (or V+A)

* Relative strength of parity violating part o<

10



Chiral Structure of QED (Reminder)
% The CHIRAL projections operators
Pr=3(1+7) P=301-7)

project out chiral right- and left- handed states

% In the ultra-relativistic limit, chiral states correspond to helicity states

% Any spinor can be expressed as:

y=3s14+P)y+3(1—P)y =Py +Py = Yr+yL

The QED vertex WY*¢

conserves chirality, e.g.

in terms of chiral states:

DI

VYO = WrV™ Or + WrT 0L + W, Y 0k + W, V01 ‘P\?“/y‘l’
VeV'or = v (1+7)PPi(1-7)¢

y
WO -P)F1-7)¢
GV (+7r)(1-7)9=0

% In the ultra-relativistic limit only

non-zero

two helicity combinations are ‘V"\N?;/ Yy Vi Yy
11



Helicity Structure of the WEAK Interaction

% The charged current ( W*) weak vertex is: e U Ve
—igw 1 5
—H (] —

* Since %(l - }/5) projects out left-handed chiral particle states:
Vs (1-7)¢0 =9y oL
*Writing ¥ = Yp+ Y, andfrom discussion of QED, WR}’“ O =0 gives
V(1 =)0 =¥, Y oL

Only the left-handed chiral components of particle spinors
-I» and right-handed chiral components of anti-particle spinors
participate in charged current weak interactions

* At very high energy (E > m) , the left-handed chiral components are

helicity eigenstates :
1 . P LEFT-HANDED PARTICLES
5(1=7P)u = > Helicity = -1
1(1 a5 . RIGHT-HANDED ANTI-PARTICLES
;(1=7)y = g Helicity = +1

12



In the ultra-relativistic limit only left-handed
-I» particles and right-handed antiparticles
participate in charged current weak interactions

e.g. In the relativistic limit, the only possible electron — neutrino interactions are:

- v
€ B~ =V, v, e W

4

% The helicity dependence of the weak interaction «==  parity violation

eg. V,+e — W~ P
E—
RH anti-particle LH particle RH particle LH anti-particle
—_— ) — - B ) ) —
Ve—— > — e e — < — Ve
ch p(’ _p(? —I)V('

Valid weak interaction Does not occur

13



Helicity in Pion Decay

% The decays of charged pions provide a good demonstration of the role of
helicity in the weak interaction

eGP

EXPERIMENTALLY: ['(n~ — e V,)
[(m= — = vy)

Might expect the decay to electrons to dominate — due to increased phase
space.... The opposite happens, the electron decay is helicity suppressed

—1.23x107%

% Consider decay in pion rest frame.
e Pion is spin zero: so the spins of the vand u are opposite
 Weak interaction only couples to RH chiral anti-particle states. Since
neutrinos are (almost) massless, must be in RH Helicity state
e Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state

— ] ) .
Vi » > U

* But only left-handed CHIRAL particle states participate in weak interaction

14



% The general right-handed helicity solution to the Dirac equation is

[

up = N

project out the left
part of the wave-fu

giving Pruy =

i9

_1 Pl ers
ZN(I E+m) —_C
—e'Ps

C
<\
i with ¢=cos% and s=sin}
E|+m
p
E+m l¢s/
I
-handed chiral , . l 0
nction using PL=3(1-7)=3| _
0 —
C

_ 1 Pl
o ZN(l E+m

In the limit

m < E this tends to zero

* similarly Pruty = %N (l n Fli)lm) e

In the limit m < E ,

%)

) Uy,

15



* Hence up:= Pruy + PLuy = % (l -+ E'ﬁl,,) UR +% <| — Elﬂ,,) ur,

4
/ /
RH Helicity RH Chiral LH Chiral

In the limit £ > m, as expected, the RH chiral and helicity states are identical

Although only LH chiral particles participate in the weak interaction
the contribution from RH Helicity states is not necessarily zero !

—_— <4 ) —
Vi < O > U

m,_ = 0: RH Helicity = RH Chiral m, # 0: RH Helicity has
LH Chiral Component

% Expect matrix element to be proportional to LH chiral component of RH Helicity
electron/muon spinor

M ¢: o< 1 ] — ﬂl_ — My from the kinematics
fi 2 E+m My + my of pion decay at rest

% Hence because the electron mass is much smaller than the pion mass the decay
T~ — eV, is heavily suppressed.

16



Evidence for V-A

% The V-A nature of the charged current weak interaction vertex fits with experiment
EXAMPLE charged pion decay

*Experimentally measure: ['(r™ —e"V,)

= (1.23040.004) x 10~*

[(m= — u—vy)
*Theoretical predictions (depend on Lorentz Structure of the interaction)
W [z~ — e Ve) ~1.3x107*
V-A (V/yﬂ(]_}ﬁ)(p)or V+A +}'5)¢ -Fn‘——q,(“vu) D
Scalar (y¢)or Pseudo-Scalar (Wy%) -— (7" —eV,) —55
(= —pu=vy)

EXAMPLE muon decay

Measure electron energy and angular
B v distributions relative to muon spin
e

u direction. Results expressed in terms 0
of general S+P+V+A+T form in “Michel “¢( ¢ n-
¢~ Parameters” /
e.g. TWIST expt: 6x10° u decays - »
Phys. Rev. Lett. 95 (2005) 101805 p = 0.75080 £ 0.00105 e

V-A Prediction: p =0.75

17



Weak Charged Current Propagator

& The charged-current Weak interaction is different from QED and QCD
in that it is mediated by massive W-bosons (80.3 GeV)

& This results in a more complicated form for the propagator:
massless massive

1
2 P —m

In addition the sum over W boson polarization states modifies the numerator

& W-boson propagator
. 9 u q V
. —1 - m
spin 1 W* (8uv — qugv/miy| ANN\»
q> —ms3,
However in the limit where q2 is small compared with my = 80.3GeV
the interaction takes a simpler form.

W-boson propagator (q2 < mﬁ, )

I8uv U v
m%v @

The interaction appears point-like (i.e no g2 dependence)

18



Connection to Fermi Theory

% In 1934, before the discovery of parity violation, Fermi proposed, in analogy
with QED, that the invariant matrix element for 3-decay was of the form:

My = Grguv WY v][v7 v
where Gg = 1.166 x 107> GeV 2

Note the absence of a propagator : i.e. this represents an interaction at a point

% After the discovery of parity violation in 1957 this was modified to

My = ﬁguv[wwu— iy’ (1— 1)yl

(the factor of V2 was included so the numerical value of GF did not need to be changed)

% Compare to the prediction for W-boson exchange

[f}‘—w#‘(l 7y q“qV/""V[fV%Y( -7V

fl — My

which for q <4 mw becomes:

My = 88w guv[WyH (1 —75)‘!’][77"(1 - }’5)11’]

GF gw Still usually use GF to express strength
‘ — of weak interaction as the is the quantity
\/i Sm'%V that is precisely determined in muon decay




Strength of Weak Interaction

% Strength of weak interaction most precisely measured in muon decay

vy * Here ¢> < my (0.106GeV)

U q Ve propagator can be written
. 2 :
B —i [8uv — quqv/miy ] _iguy
€ q* —mi, miy,
- In muon decay measure  giy /miy

*Muondecay =  Gp = 1.16639(1) x 107> GeV 2

* To a very good approximation the W-boson

Gr _ 8w
V2 8m‘24,

% To obtain the intrinsic strength of weak interaction need to know mass of

W-boson: my = 80.403 +0.029GeV
g%v B Sm%VGF B L
4t 4/2rn 30

) Oy =

| The intrinsic strength of the weak interaction is similar to, but greater than,

the EM interaction ! It is the massive W-boson in the propagator which makes
it appear weak. For q2 > mf-v weak interactions are more likely than EM.

20



Summary

* Weak interaction is of form Vector — Axial-vector (V-A)

_igwl AP
7 ST (1=7)

% Consequently only left-handed chiral particle states and right-handed
chiral anti-particle states participate in the weak interaction

)

MAXIMAL PARITY VIOLATION

% Weak interaction also violates Charge Conjugation symmetry

% At low q2 weak interaction is only weak because of the large W-boson

mass

Gr _ &y
V2 Sm‘a,

% Intrinsic strength of weak interaction is similar to that of QED
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