
221A Lecture Notes
Notes on Classica Mechanics I

1 Precursor: Fermat’s Principle in Geomet-

ric Optics

In geometric optics, you talk about how light rays go. In homogeneous medi-
ums, the light rays go straight. At the interace between different mediums,
light rays get reflected or refracted. Fermat formulated the problem in a very
elegant way: the light rays choose their paths to minimize the optical length.
The optical length, as you know, is defined by the actual length of the path
times the index of refraction of the medium. Allowing the index of refraction
to vary as a function of the position n(~x), the optical length is given by

l =
∫
n(~x)dl, (1)

where dl =
√

(dx)2 + (dy)2 + (dz)2 is the line segment along the path. The
Fermat’s principle is stated mathematically as

δl = 0 (2)

along the actual path of a light ray.
In a homogeneous medium, the index of refraction is a constant, and the

problem is just to minimize the path length, correctly choosing the straight
lines. If there are two mediums attached at z = 0, Fermat’s principle tells us
that the light ray gets refracted at the interface. Choosing the initial point
as (xi, 0, zi) (zi < 0, the index of refraction n1) and the final point (xf , 0, zf )
(zf > 0, the index of refraction n2), the only parameter to be determined is
the value of x at z = 0 where the light ray gets refracted. The optical length
is

l = n1

√
(x− xi)2 + z2

i + n2

√
(xf − x)2 + z2

f . (3)

Minimizing it with respect to x,

0 =
dl

dx
= n1

x− xi√
(x− xi)2 + z2

i

−n2
xf − x√

(xf − x)2 + z2
f

= n1 sin θ1−n2 sin θ2. (4)
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This is nothing but Snell’s law of refraction. On the other hand, if the light
ray is reflected at the surface, zf < 0 and the optical length is

l = n1

√
(x− xi)2 + z2

i + n1

√
(xf − x)2 + z2

f . (5)

Minimizing it with respect to x,

0 =
dl

dx
= n1

x− xi√
(x− xi)2 + z2

i

−n1
xf − x√

(xf − x)2 + z2
f

= n1(sin θ1− sin θ2). (6)

Therefore the incident and reflection angles are the same, as we know well.
If the index of refraction depends continuosly on the position, you have to

derive a differential equation from Fermat’s principle and solve it. In order to
do so, you can introduce a parameter along the path s so that the positions
on the path are given by functions of s: ~x(s) = (x(s), y(s), z(s)). Then the
optical length is written as an integral over the parameter s as

l[~x(s)] =
∫
n(~x(s))

√
~̇x

2
ds, (7)

where the dot refers to the s-derivative ẋ = dx/ds etc. Now we take the
variation of l with respect to the path, and require that the variation van-
ishes. This will choose the paths of extremal legnth, which can be either
minimum or maximum. Fermat’s principle actually allows the maximum as
well. Plugging in ~x(s)+ δ~x(s) in the optical length and keeping only the first
order in δ~x, we find

l[~x(s) + δ~x(s)]− l[~x(s)] =
∫ (δ~x · ~∇n)√~̇x2

+ n
δ~̇x · ~̇x√
~̇x

2

 ds. (8)

Now we require that this expression vanishes for any variation δ~x(s). By
integrating the second term in parts, find

0 =
∫
δ~x ·

~∇n√~̇x2 − d

ds
n

~̇x√
~̇x

2

 ds (9)

for any variation, and hence

(
~∇n

)√
~̇x

2 − d

ds
n

~̇x√
~̇x

2
= 0. (10)
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Finally, it is useful to note that s is an arbitrary parameter, and we can

always choose the parameter such that

√
~̇x

2
= n (or you can choose it to be

a constant, too, if you want, but that would be less convenient). Then the
equation simplifies drastically to

~̈x = n~∇n, ~̇x
2

= n2. (11)

In other words, the equation is the same for a particle of unit mass moving
in the “potential energy” V = −n2(~x)/2 as a function of “time” s with the

“total energy” E = 1
2
~̇x

2
+ V = 1

2
~̇x

2 − 1
2
n2(~x) = 0. With this idea, the Snell’s

law is “explained” because the “particle” is “pulled” into the region with
higher index of refraction where it moves “faster” and moves away quicker
from the interface in the perpendicular direction. This is indeed the original
Newton’s Corpuscular Theory of Light; this interpretation of course turned
out to be wrong, but the equation we have here is nonetheless the right one
for geometric optics.1

For example, in fiber optics, you set up a “potential well” that has a
minimum at the center of the cable and goes up away from the center. If
you approximate the “potential well” by a quadratic function around the
minimum V = −1

2
n2

1 + 1
2
ω2r2, the “particle” oscillates around the center

with the frequency ω just as a harmonic oscillator, and does not go away too
far from the center.

But in this case you have to be careful that the “time” s has nothing to
do with the actualy time t. In fact, the paths “faster” in s are often slower
in t.

2 Lagrangian

Lagrangian formalism for mechanics uses the “action” whose minimum (or
more precisely, extremum) determines the equation of motion. Clearly, it
was inspired by Fermat’s principle for optics, and I frankly don’t see any
motivations to formulate mechanics this way other than aesthetics. It turns
out, however, that the symmetry of the system and change of variables are
much clearer with Lagrangian than with Newton’s equation of motion ~F =

1It is ironical that one of the earliest evidence for wave nature of light is New-
ton’s rings. See an interest account at http://web.clas.ufl.edu/users/rhatch/pages/
01-Courses/current-courses/08sr-newton.htm.
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m~a. Moreover, it appears very naturally in the path-integral formulation of
quantum mechanics.

A Lagrangian2 depends on the (generalized) coordinates qi(t) and their
first time-derivative q̇i(t). The action is defined by integrating the Lagrangian
over time,

S[qi(t)] =
∫ tf

ti
L(qi(t), q̇i(t))dt. (12)

The action is said to be a “functional”, a function of function. The trajectory
q(t) is a function of time, and the action is a function of the trajectory
S[q(t)], a functional. The principle of the least action states that the particles
follow trajectories that minimize the action. (Again, the trajectory can be
extremum, not necessarily a minimum.) By taking the variation of the action
with respect to qi,

δS = S[qi + δqi]− S[qi] =
∫ tf

ti

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
. (13)

The latter term is integrated by parts, and

δS =
∫ tf

ti

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi +

∂L

∂q̇i
δqi

∣∣∣∣∣
tf

ti

. (14)

Here, we are interested in variations where the initial and final positions are
fixed δqi(ti) = δqi(tf ) = 0. Then the action is minimized if

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (15)

This is Euler–Lagrange equation of motion.
For example, the Lagrangian of a point particle in a potential V (q) is

L =
m

2
q̇2
i − V (q). (16)

The Euler–Lagrange equation is then given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= mq̈i +

∂V

∂qi
= 0. (17)

2I’ve once read a debate article if the correct spelling is “Lagrangian” or “Lagrangean.”
The name of the person is Lagrange, but he is originally from Italy, with the original name
Lagrangi. Apparently most people have decided that Lagrangian is correct. But we talk
about Euler–Lagrange equation of motion, Lagrange multiplier, etc. Can anybody explain
why to me?
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This is nothing but Newton’s equation of motion F = ma with the identifi-
cations Fi = −∂V/∂qi, ai = q̈i.

Symmetry of the system is much more manifest in Lagrangians than in
Newton’s equation of motion. For example, the case of the electron in the
hydrogen-like atoms is given by V = −Ze2/r, a spherically symmetric sys-
tem. In Newton’s equation,

m~a =
Ze2~r

r3
, (18)

which is covariant under the rotation. In other words, there are three equa-
tions of motion for x, y, z, and they are mixed with each other under the
rotation. But the Lagrangian is invariant under the rotation:

L =
m

2
(ẋ2 + ẏ2 + ż2) +

Ze2

r
. (19)

Already at the first sight, it is clear that the system is rotationally invariant.
Another advantage of using Lagrangian is the ease in changing the vari-

ables. For instance, going to the spherical coordinate is straight-forward for
the above example of hydrogen-like atoms,

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

Ze2

r
. (20)

The Euler–Lagrange equations follow very easily,

mr̈ +
Ze2

r2
= 0, (21)

m
d

dt
(r2θ̇)−mr2 sin θ cos θφ̇2 = 0, (22)

m
d

dt
(r2 sin2 θφ̇) = 0. (23)

You already see that there is a conserved quantity, mr2 sin2 θφ̇, which is
nothing but the angular momentum Lz. But anybody who tried to rewrite
the Newton’s equation of motion in spherical coordinates from that in the
Cartesian coordinates,

m~̈r +
Ze2

~r
r3 = 0, (24)

would know that it is much more tedious that way.
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In the path integral formulation of quantum mechanics, the quantum
mechanical amplitudes are expressed in terms of integral of a phase factor
eiS[q(t)]/h̄ for all possible paths q(t). The extremum of the action is noth-
ing but a pass q(t) where the phase factor is stationary. In the limit of
h̄ → 0, the stationary phase approximation of the integral tells you that
the integral is dominated by the stationary phase configuration, which is the
Euler–Lagrange equation. This way, the classical mechnics is reproduced in
the h̄→ 0 limit.

3 Hamiltonian

The Hamitonian of the sytem is nothing but the total energy, but it deserves
a special name because of its important role in both classical and quantum
mechanics.

The first thing you define in Hamiltonian mechanics is the “canonical
momentum” pi “conjugate” to the “canonical coordinates” qi. Then the
Legendre transform from the original variables (q̇i, qi) in the Lagrangian to
the new variables (pi, qi) defines the Hamiltonian. This is very similar to what
you do in thermodynamics. For instance, the internal energy U is regarded
as a function of the entropy S and the volume V . The temperature of the
sytem is defined by

T =
∂U

∂S

∣∣∣∣∣
V

. (25)

The Legendre transform from the variables (S, V ) to (T, V ) defines the free
energy F (T, V )

F (T, V ) = U(S, V )− TS (26)

and the inverse Legendre transform defines the entropy as

S = − ∂F

∂T

∣∣∣∣∣
V

. (27)

The temperature T and the entropy S are “conjugate.” What we do now
is the same Legendre transform from the variables (q̇i, qi) to (pi, qi), except
that the Hamiltonian has the opposite sign from what you would naively do.

Starting from the Lagrangian L(q̇i, qi) that depends on qi and q̇i, the
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canonical momenta are defined by

pi =
∂L

∂q̇i

∣∣∣∣∣
qi

. (28)

And then you define the Hamitonian (here comes the opposite sign!)

H(pi, qi) = piq̇i − L(q̇i, qi). (29)

The point is that you always eliminate q̇i using pi. The Hamiltonian is a
function of pi and qi only, without any time derivatives of them. The inverse
Legendre transform brings q̇i back:

q̇i =
∂H

∂pi

∣∣∣∣∣
qi

. (30)

We normally do not write it explicitly that qi are held fixed in taking deriva-
tives with respect to pi, because it is understood that the Hamiltonian is a
function of independent variables (pi, qi).

The Euler–Lagrange equation of motion is then rewritten in the following
way.

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

d

dt
pi −

∂L

∂qi
= 0. (31)

The last term ∂L/∂qi is calculated with q̇i held fixed, because it was derived
from the variation of the action. It turns out to be the same as −∂H/∂qi
where pi are held fixed. This can be seen as follows:

∂L

∂qi

∣∣∣∣∣
q̇i

=
∂(pj q̇j −H)

∂qi

∣∣∣∣∣
q̇i

=
∂pj

∂qi

∣∣∣∣∣
q̇i

q̇j + pj
∂q̇j
∂qi

∣∣∣∣∣
q̇i

− ∂H

∂qi

∣∣∣∣∣
qi

− ∂H

∂pj

∂pj

∂qi

∣∣∣∣∣
q̇i

= −∂H
∂qi

. (32)

At the last step, we used Eq. (30) to cancel the first and the last terms, and
the trivial point that

∂q̇i
∂qi

∣∣∣∣∣
q̇i

= 0 (33)
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because q̇i are held fixed. Therefore, Eq. (31) becomes

d

dt
pi +

∂H

∂qi
= 0. (34)

Putting Eqs. (30) and (34) together,

d

dt
pi = −∂H

∂qi
, (35)

d

dt
qi =

∂H

∂pi

. (36)

These are called Hamilton equations of motion.
One of the most important properties of Hamilton equations of motion

is that they are first order differential equations, while the Euler–Lagrange
equation of motion is second order. This simple point makes the mathemat-
ical structure much more tractable. In studies of chaos, non-linear dynamics
and beam dynamics, Hamilton equations of motion are indispensable.

Another important property of the Hamiltonian is that it is conserved;
it is nothing but the total energy! The fact that the Hamitonian is con-
served dH/dt = 0 can be checked explicitly using Euler–Lagrange equation
of motion,

dH

dt
=

d

dt
(piq̇i − L)

=
d

dt

(
q̇i
∂L

∂q̇i
− L

)

= q̇i
d

dt

∂L

∂q̇i
+ q̈i

∂L

∂q̇i
− q̇i

∂L

∂qi
− q̈i

∂L

∂q̇i
= 0, (37)

where the first and third terms cancel because of the Euler–Lagrange equa-
tion, while the second and fourth cancel trivially. Note that we used the fact
the only time dependence of L comes through the time-dependence of qi and
q̇i, not explicitly ∂L/∂t|q,q̇ = 0. Namely, we assumed the invariance of the
Lagrangian under time translation.

Much more important is the fact that the conservation of the Hamiltonian
can also be shown as a consequence of the invariance of the system under the
time translation. Under the time translation t → t + δt, the action changes
as

S =
∫ tf

ti
Ldt→

∫ tf+δt

ti+δt
Ldt = S + L(tf )δt− L(ti)δt. (38)
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and hence δS = L(tf )δt− L(ti)δt. On the other hand, it can also be worked
out as

δS = δ
∫ tf

ti
Ldt

=
∫ tf

ti
δLdt

=
∫ tf

ti

(
∂L

∂qi
q̇iδt+

∂L

∂q̇i
q̈iδt

)
dt

=
∫ tf

ti

((
d

dt

∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

)
δtdt

=
∂L

∂q̇i
q̇i

∣∣∣∣∣
tf

ti

δt. (39)

Comparing above two equations, we find

L(tf )− L(ti) =
∂L

∂q̇i
q̇i

∣∣∣∣∣
tf

ti

(40)

or
(piq̇i − L)(tf ) = (piq̇i − L)(ti). (41)

Therefore, systems invariant under the time translation lead to the conserved
Hamiltonian.

A corollary of this statement is that systems not invariant under the time
translation do not conserve energy. For example, ever-expanding Universe
does not have conserved energy. The energy can decrease (adiabatic expan-
sion of thermal gas) or can increase (the mysterious negative-pressure Dark
Energy found recently).

In quantum mechanics, conserved quantities associated with an invariance
of the system actually generate the invariance. I’ll make this point clear in
later sections.

4 Poisson Bracket

Poisson Bracket between two physical quantities A(pi, qi) and B(pi, qi) is
defined as

{A,B} =
∂A

∂qi

∂B

∂pi

− ∂A

∂pi

∂B

∂qi
. (42)
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Why do we define such a thing? Because it is useful.
First of all, the Hamilton equations of motion Eq. (36) can be written as

d

dt
pi = {pi, H}, (43)

d

dt
qi = {qi, H}. (44)

In fact, it can easily be shown that the time derivative for any physical
quantity can be written as

d

dt
A = {A,H}. (45)

In this sense, the Hamiltonian is said to generate the time translation, be-
cause Poisson brackets with the Hamiltonian pushes the time forward.

In quantum mechanics, this point is much more manifest, because Schrödinger
equation is nothing but the Hamiltonian pushing the time forward:

ih̄
∂

∂t
|ψ〉 = H|ψ〉. (46)

To mathematicians, Poisson brackets define the symplectic structure on the manifold
(phase space): a closed two-form ω =

∑n
i=1 dpi ∧ dqi which gives the phase-space volume

element dV = ωn. The time evolution of the system is described by the Hamiltonian
vector

∂

∂t
= (ṗi

∂

∂pi
, q̇i

∂

∂qi
) = (−∂H

∂qi

∂

∂pi
,
∂H

∂pi

∂

∂qi
) =

∂H

∂xi
ωji

∂

∂xi
,

where xi = (qi, pi) is the phase space coordinate.
Similarly, the total momentum is conserved because of the invariance

under the spatial translation. For example, the total momentum is nothing
but Px =

∑
i pi,x for one-dimensional problems. Then it is easy to see that∑

i

d

qi,x
A = {A,Px}. (47)

Indeed, the total momentum generates the overall translation for all positions
qi.

The connection is also very interesting for angular momenta. Starting
with the orbital angular momenta ~L = ~q × ~p for a point particle, we can
calcualte the Poisson brackets among them.

{Lx, Ly} = {qypz − qzpy, qzpx − qxpz} = −qypx + qxpy = Lz, (48)

{Ly, Lz} = {qzpx − qxpz, qxpy − qypx} = −qzpy + qypz = Lx, (49)

{Lz, Lx} = {qxpy − qypx, qypz − qzpy} = −qxpz + qzpx = Ly. (50)
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This is exactly the same as the commutation relation among the spin oper-
ators in quantum mechanics

[Sx, Sy] = ih̄Sz, [Sy, Sz] = ih̄Sx, [Sz, Sx] = ih̄Sy. (51)

It turns out that the angular momentum is conserved because of the rota-
tional invariance of the system, and the angular momentum generate the
rotation. Because rotation around x, y, z axes are not independent and are
related in a particular way, the Poisson brackets or commutation relation
among angular momenta cannot be anything else.

Poisson brackets are promoted to commutation relations among operators
in quantum mechanics. I’m truly amazed that the classical mechanis before
the dawn of quantum mechanics came up with its formulation that so closely
resembles the commutation relation among operators!
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