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It is generally thought desirable that quantum theory entail an uncertainty relation for time and
energy similar to the one for position and momentum. Nevertheless, the existence of such a relation
has still remained problematic. Here, it is shown that the problem is due to a confusion between the
position coordinates of a point particle (a material system) and the coordinates of a point in space:
The time coordinate should be put on a par with the space coordinates, not with the canonical
position coordinates of a material system. Whereas quantum mechanics incorporates a Heisenberg
uncertainty relation between the canonical position coordinates and their conjugate momenta, there
is no reason why a Heisenberg relation should hold between the space coordinates and the canonical
momenta, or between the time coordinate and the energy of the system. However, uncertainty
relations of a different kind exist between the space coordinates and the total momentum of the
system and between the time coordinate and the total energy. These relations are completely similar
and may be taken together to form a relativistically covariant set of uncertainty relations. The
relation between the time coordinate and the energy implies the well-known relation between the

lifetime of a state and its energy spread. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

Ever since Heisenberg published his famous article’ on the
Uncertainty Principle, the uncertainty relation between en-
ergy and time has been puzzling. It is the purpose of the
present paper to solve this puzzle by exposing the confusions
from which it arose and by showing how a generally valid
uncertainty relation for energy and time can be derived.

In his article, Heisenberg sought to clarify the physical
meaning of the quantum mechanical commutation relations,
in particular the one between position and momentum, by
analyzing how these quantities are measured in an actual
physical experiment. He thus arrived at the first formulation
of the uncertainty principle for position and momentum. In
the same article Heisenberg also dealt with the case of en-
ergy and time and one finds the following statement®: “‘In a
definite ‘state’ of the atom, the phases are in principle inde-
terminate, as one can see as a direct consequence of the
familiar equations

Et—tE=—i% or Jw—wJ=-iA, 1
where J is the action variable and w is the angle variable.”’
This single sentence carries with it much of the confusion
about the uncertainty principle for energy and time. For, first,
it suggests that there exists or should exist an operator for
time in quantum mechanics, and, second, it mixes up energy
and time with action and angle variables.

The extent of this confusion may be read off from several
passages in the book of John von Neumann, the man who
gave quantum mechanics a sound mathematical basis.
Whereas, as we shall see, there is no reason why (coordinate)
time should be an operator in quantum mechanics, von Neu-
mann considers the treatment of time as a parameter as a real
if not the main weakness of that theory.’

In Sec. II we shall start by recalling the Hamiltonian for-
malism of classical mechanics on which nonrelativistic quan-
tum mechanics was based. We shall argue that the evolution
parameter ¢ occurring in that formalism should not be put on
a par with the dynamical variables of the system. In particu-
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lar, the evolution parameter and the Hamiltonian, contrary to
what is often said, do not form a canonical pair. Accordingly,
a relation like the first equation in (1) does not occur in
quantum mechanics. However, ‘timelike’” canonical vari-
ables, in the form of angle variables, do sometimes exist, and
they are observables in quantum mechanics.* The argument
of Sec. II will be much strengthened by analyzing, in Sec.
I11, the distinction as well as the relation between the canoni-
cal variables and the coordinates of space and time. Much of
the confusion about the uncertainty principle for energy and
time is caused by mixing up the canonical position coordi-
nates of a point particle and the coordinates of a point in
space. The ubiquity of point particles in fundamental physics
has helped to propagate this confusion, but, from the point of
view of general mechanics, point particles are only very spe-
cial mechanical systems. We shall conclude that the partners
of the evolution parameter ¢ are not to be found among the
canonical variables: The partners of ¢ are the three coordi-
nates of three-dimensional space. Just as the coordinates of a
point in space are not turned into operators in quantum me-
chanics, so neither should coordinate time be turned into an
operator. Hence, an uncertainty relation for ¢ similar to the
one between the canonical coordinates and momenta, does
not exist. Nevertheless, there are many instances in physics
where an ‘‘uncertainty’’ relation between time and energy
does hold, the relation between the lifetime and the linewidth
of a quantum state being the prime example. In Sec. IV we
shall show how this relation can be derived. A completely
similar relation involving the space coordinates and the total
momentum also exists.

II. THE HAMILTONIAN FORMALISM

In this section the Hamiltonian formalism of classical me-
chanics will be briefly recalled. In this formalism the state of
a system is given by a set of 2n, time-dependent, so-called
‘““‘canonical’’ variables:

ql(t)r'“’qn(t)’ pl(t),-”’pn(t)'
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The g; are called (generalized) coordinates, the p; are the
conjugate momenta. We can think of these variables as de-
fining a point in a 2x-dimensional phase space. Depending
on the system, the physical meaning of the canonical vari-
ables may vary widely, a point to be remembered in the
following. The time evolution of the system is determined by
the Hamiltonian H, a function of the canonical variables. If
time-dependent external forces act on the system H may also
depend explicitly on t: H=H(q,p,t). The time evolution of
an arbitrary function A =A(q,p,t) of the canonical variables
is given by

_M +{A.H 2
ar o TAHY @
The symbol on the right-hand side of this equation is the
Poisson bracket, defined as

dA dB A aB}

wn=3 |22 n2)

9q; dp; 9p; 9q;

If H does not depend explicitly on ¢, it is a constant of the
motion and H=E is the energy of the system. For the ca-
nonical variables themselves (2) reduces to the familiar
Hamiltonian equations of motion:

dt  dp; dt | aq;
The canonical variables satisfy

{‘L' ’Pj}= 51‘,‘ . 3)

The transition to quantum mechanics is made’® by replac-
ing the canonical variables by operators on a Hilbert space
satisfying the canonical commutation relations:

[q;,p;]=ihd;;. (4)
From this the well-known Heisenberg uncertainty relations:
AqAp;=ih & (5)

can be derived. It should be remarked right away that the
transition from arbitrary canonical variables to quantum me-
chanical operators is fraught with problems and that relations
(4) and (5) are relatively unproblematic only for Cartesian
coordinates and momenta. We shall come back to this later
in this section.

A canonical transformation is a transformation from one
set of canonical variables to another:

q'=q'(q,p;t), p'=p'(q,p,t),

where we have dropped indices for convenience. The new
variables have the same Poisson brackets (3) as the old ones
and obey the same equations of motion with respect to a new
Hamiltonian function H'(q',p’,?).

As has been remarked already, the physical meaning of
the generalized coordinates and the conjugate momenta may
vary widely. If the system is a set of point particles, the
coordinates g are usually taken to be the Cartesian position
coordinates of the particles but polar coordinates may
equally well be used. If the system is an extended rigid body,
some of the coordinates may be angles defining the orienta-
tion of the body. Furthermore, the coordinates and momenta
may become mingled by a canonical transformation. The
roles of the ¢’s and the p’s may even be completely inter-
changed by such a transformation.
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Quite often one finds the statement that in the Hamiltonian
formalism energy and time are canonical conjugates.>S
Since, initially, ¢ is just a parameter in the theory this must
be taken to mean first, that ¢t is now considered as a new
independent canonical variable and, second, that this new
variable and (minus) the Hamiltonian H form an (n+ 1)th
canonical pair in an enlarged (2n+2)-dimensional phase
space. The first step to accomplish this is to introduce a new
evolution parameter on which all variables including ¢ de-
pend. The final step would be to find a new Hamiltonian
which generates the evolution of the system with respect to
the new parameter. However, it turns out that this program
cannot be carried through: It is not possible to find a Hamil-
toman that generates the motion in the enlarged phase
space.” That incorporating ¢ and H in the set of canonical
variables spells trouble may be guessed already from the fact
that H is not independent of the other canonical variables.

Why would one want to regard ¢ as an (n+ 1)th canonical
coordinate? This seems to be inspired by the wish to arrive at
a relativistically covariant description.>” If the system con-
sists of a single particle and the coordinates q; are taken to be
the three Cartesian position coordinates of the particle, it is
tempting to try and treat the time parameter as a fourth co-
ordinate to arrive at a relativistically covariant description,
This can be done up to a pomt but ultimately leads out of the
normal Hamiltonian scheme.’ Furthermore, for a system con-
sisting of more than one particle this route is clearly blocked;
in fact, it has been shown that a relativistically covariant
Hamiltonian formahsm for a system of interacting point par-
ticles does not exist.'” For an arbitrary mechanical system
the physical meaning of the generalized coordinates may be
rather less simple than it is for a system of point particles and
the desire to treat the evolution parameter as a canonical
variable alongside the ¢’s in this general case® to obtain a
relativistic description does not seem to be well motivated.

We shall not go into the detalls of the complicated matter
of relativistic particle dynamics.!® The point we want to
make is that one cannot fulfill the demand of relativistic
covariance by adding ¢ to the canonical position variables of
the system. The arena of the Hamiltonian formalism is the
2n-dimensional phase space of ¢-dependent canonical vari-
ables. In the following we shall argue that the true partners of
t are not the n canonical coordinates of the material system
but the three space coordinates of a point in four-dimensional
space time.

We conclude that in the Hamiltonian formalism ¢ is a pa-
rameter, not a dynamical variable. The relationship between
¢t and H is given by Eq. (2); that is, they are the evolution
parameter and the generator of the time evolution, respec-
tively. In particular, there is no Poisson bracket defined be-
tween ¢ and H. Consequently, in quantum mechanics, one
does not have a relation like the first equation in (1). Accord-
ingly, there is no natural analog for energy and time of the
‘““‘canonical’’ uncertainty relations (5).

We have argued that in the Hamiltonian formalism time is
not a dynamical variable. There may, however, exist true
dynamical variables which behave very much like the time
parameter. Consider, for example, the position of the tip of a
hand of a clock. This position represents time for us because
it depends on the time parameter in a very simple manner.
But this position is not the time parameter. It is a dynamical
variable of the system exhibiting a particularly simple ¢ de-
pendence. A clockmaker’s shop is full of such variables!

A general class of ‘‘timelike’’ canonical variables is
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formed by the so-called angle variables. They occur in mul-
tiperiodic systems. As an example, one may think of the
angles defining the direction of the hands of a clock. The
corresponding canonical momenta are called action vari-
ables. We denote the angle variables by w; and the action
variables by J;. In these variables the Hamiltonian takes the
form H=H(J,...,J,), i.e., it does not depend on the angle
variables. Then

{wi J}=26;; dJ;/dt={J; H}=0;
dwl/dt={w, ,H}= Vi.

The v; are constants depending on the J’s which themselves
are constants of the motion. So, the solution of the equations
of motion is

J;=const
w;= Vit+ 5,~ ,

where §; is an arbitrary constant. This solves the dynamical
problem, but the canonical transformation leading from the
original variables to the angle and action variables is gener-
ally hard to find.

The w; and J; must be sharply distinguished from ¢ and H;
the former are pairs of canonically conjugate dynamical vari-
ables and there may be as many as n such pairs. Although
the angle variables behave in much the same way as ¢ there
is an important difference. Whereas ¢ is linear, running from
—o to +oo on the real axis, the w; are periodic in the sense
that the points (wy,...,w,,J,....J,) and (w;+2m,...,w,
+2m,J,,...,J,) label the same phase point. The v; are the
frequencies of the periodic motions.

In quantum mechanics the canonical variables w; and J;
become operators for which one would naively put
[w;,J;]1=i% &;; . Uncertainty relations of type (5) between the
w’s and J’s would then seem to follow. Identifying the
‘“‘state’’ determining quantities in the quotation preceding
equations (1) with J’s and the ‘‘phases’ with w’s we may
now appreciate Heisenberg’s statement. At the same time we
see clearly how confusing the “‘or’” in (1) really is.

We have noted already that the transition from canonical
variables to quantum mechanical operators is not straightfor-
ward. The action and angle variables form a case in point. In
classical physics the action variables take on positive values
only. However, the commutation relation [w; ,J;]=i% &;; can-
not be satisfied if J; is a positive operator. Remarkably, this
problem had been recognized already at the time when
Heisenberg wrote his article.!’ The problem is closely related
to the problem of defining a phase operator for the quantized
electromagnetic field. For the purpose of the present article
we may ignore this difficulty since we only want to show
that from the point of view of the Hamiltonian formalism the
first equation in (1) is unfounded whereas the second is not.

Summarizing this section, we have seen that in the Hamil-
tonian formalism a mechanical system is described by n gen-
eralized coordinates and » conjugate momenta depending on
an evolution parameter ¢ and forming n canonically conju-
gate pairs. The evolution of the system is governed by the
Hamiltonian function. In quantum mechanics the canonical
pairs are turned into operators obeying the canonical com-
mutation relations. From these relations uncertainty relations
between the operators may, in principle, be derived. From
the point of view of this quantization procedure there is no
ground to turn the evolution parameter into an operator. Con-
sequently, there is no analogous uncertainty relation involv-
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ing ¢. In certain cases there exist canonical variables which
depend linearly on ¢ and which, therefore, resemble ¢ very
much. In quantum mechanics these variables become quan-
tum mechanical observables. They should, however, be
sharply distinguished from the evolution parameter. In the
next section these conclusions will be further reinforced.

IIL. SPACETIME

In the previous section we have seen that the arena of the
Hamiltonian formalism is the 2n-dimensional phase space of
the canonical variables. It is true that mechanical systems are
situated in three-dimensional space but for the Hamiltonian
formalism this fact is generally not relevant: In many appli-
cations the coordinates x;,x,,x; of three-dimensional space
need not even be mentioned. (The same is true for the
Lagrange formalism.) Of course, the canonical variables usu-
ally have a direct interpretation as quantities in three-
dimensional space. This is particularly so in the theoretically
all-important case of a system of point particles. The canoni-
cal coordinates g, then are the Cartesian position coordinates
of the particles in three-dimensional space, and the conjugate
momenta p; are the three-dimensional momenta. We shall
denote this particular set of canonical variables by (g¢,p¢),
where k=1,2,3 and a=1,...,N is the particle index. The
variables ¢ much resemble the coordinates x of three-
dimensional space but they should be clearly distinguished.
For example, the same location x in three-dimensional space
may be occupied by any of the N particles, i.e., for any a we
may have gy =x, . In fact, ignoring this distinction between
the position of a particle (a material body) and of an abstract
point in space has been an important cause of the confusion
mentioned in the preceding section. We have seen how for a
one-particle system people have tried to obtain a Lorentz-
covariant description by considering the evolution parameter
t as a fourth canonical coordinate alongside the particle’s
position g;. However, the wish to include ¢ in the set of
canonical variables rests on an optical illusion, for the com-
panions of the evolution parameter are not to be found
among the canonical coordinates; the true companions of ¢
are the three space coordinates x,,x,,x;. Likewise, the co-
variant partners of the Hamiltonian H are not the conjugate
canonical momenta but the three generators P, of transla-
tions in space.

If we think of a system as being situated in three-
dimensional space, we may consider the effect on the dy-
namical variables of a translation in space. Just as the dy-
namical variables may explicitly depend on ¢ they may also
explicitly depend on x. This may be the case in the presence
of an inhomogeneous external field. For a general dynamical
variable one would then have to write A =A(q,p,x,t) which
indicates explicitly that ¢ goes with x, not with g. By analogy
with (2):

JA

dA“ +{A,P
d_xk_axk { > k}'

In particular,

dq; JP; dp; oP; )
= =~ ——_ (i=1,..,n;

B dn kL2

Usually the x dependence of the canonical variables is not
very interesting from a physical point of view and in many
cases it will be rather trivial. For example, a space translation
adds a constant to all canonical variables which denote po-
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sitions in space, whereas their conjugate momenta remain
unchanged. But canonical variables may be much more com-
plicated than that (remember the freedom of performing ca-
nonical transformations) and their behavior under transla-
tions in space may be as complicated as under translations in
time.

For a closed system (no external fields) the translations in
space and time are symmetry transformations and the gen-
erators P, and H are conserved quantities having the mean-
ing of the total momentum and total energy of the system,
respectively. [The use of the name ‘‘momentum’” for both
the generator P, of space translations and the canonical con-
jugate momenta p; is apt to cause confusion. This is particu-
larly true in the case of point particles (cf. below). But it
should be clear from the foregoing that the two notions are
conceptually very different.]

For a system of point particles the behavior under space
translations of the special canonical variables (gf,pz) is
very simple:

(44 (44 o a
x—oxXxtay=>qr—qetag,  pr—Pg-

In this case, the generator of space translations is given by
P= 2 Pk -
a

If there is only one particle, P, coincides with the canonical
momentum p, providing another example of the deceptive
simplicity of this system.

The simple behavior under space translations of a system
of point particles may be compared with the simple behavior
under time translations of the angle and action variables of a
multiperiodic system:

t—t+a=w,—w;tva, J,—J;.

Just as the canonical position coordinates g, of point par-
ticles resemble the space coordinates x; in their behavior
under space translations, so the w;, or rather the w;/v;, of
multiperiodic systems resemble the time coordinate ¢ in their
behavior under time translations. This may easily cause con-
fusion, especially if there is only one particle or only one
angle variable. However, also in this case, the canonical po-
sition g, remains conceptually different from the space co-
ordinate x, and the canonical angle variable w remains con-
ceptually different from the time coordinate ¢.

Confusing the space coordinates with the canonical posi-
tion variables of point particles led von Neumann to suppose
that in a relativistic quantum mechanics time must be an
operator and that it would even be desirable to have as many
times as there are particles.3 However, in present-day el-
ementary particle physics, particles are described by relativ-
istic quantum fields. Fields allow for a much more natural
covariant description than do particles. The space-time coor-
dinates appear as arguments of the fields. There is no time
operator. What von Neumann had in mind would correspond
to what may be called a ‘‘clock particle’’; a point particle
provided with a very small ‘“point’’ clock of unit frequency.
Such a clock particle would be characterized by a position
variable g, and an angle variable w satisfying the numerical
equations q,=x; and w=¢. Under a Lorentz transformation
of the space-time frame (x,,¢) and (g, ,w) transform as four
vectors. On the other hand, g, and ¢ are quantities of a dif-
ferent kind and should not be considered to form a four vec-
tor.
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The relation between the g’s and the w’s on the one hand,
and the x’s and ¢ on the other, is quite interesting. It seems
plausible that the notions of space and time are derived from
the properties of material bodies. The ¢g’s and w’s would
then correspond to more primitive notions of space and time
than the x’s and ¢, the latter being abstractions from the
former. We may speculate that the concrete notions of time
as they are connected with periodic changes would have led
to the abstract notion of a single linear time extending from
minus to plus infinity. Similarly, the local notions of space as
derived from the behavior of material bodies would have led
to the abstract notion of an infinitely extended linear space.
Thus there would have originated the idea of an empty, in-
finitely extended linear space time, the stage on which the
drama of nature unfolds and the starting point of most con-
siderations in theoretical physics since Newton. In fact, the
whole of physics, apart from general relativity, is based on
this notion. In particular, the concept of space-time symme-
tries, leading up to important conservation laws, rests on it.

Just as spacetime is the stage for classical mechanics, so it
is for quantum mechanics. In quantum mechanics the dy-
namical variables q;, p;, 9%, Pk, w;,J;, H, and P, become
quantum mechanical observables. By contrast, the space-
time coordinates x; and ¢ remain what they are: c-number
labels of space-time points. No more should ¢ be made an
operator than should x; . In particular, the unitary operators
which represent space-time symmetries in quantum mechan-
ics depend on the c-number parameters of ordinary space
and time (see next section). Paraphrasing von Neumann, the
fact that quantum mechanics presupposes for its formulation
the existence of an ordinary space-time frame could perhaps
be considered as its main weakness!

Summarizing this section, we have seen that a sharp dis-
tinction must be made between the canonical variables de-
noting particle positions and the space and time coordinates
labeling points in spacetime. The latter are not turned into
operators in quantum mechanics. In particular, for a system
of particles, one should not demand a commutation relation
between ¢ and H as a complement to the ones between g and
p, nor could there be such a commutation relation.'? Again,
one sees that there is no uncertainty relation analogous to (5)
between H and ¢.

IV. THE UNCERTAINTY PRINCIPLE FOR ENERGY
AND TIME

Up till now we have tried to show that the wish to have a
“‘canonical’’ commutation relation for energy and time rests
on an optical illusion originating in classical mechanics.
Nevertheless there are many instances in physics where an
uncertainty principle of some sort for energy and time does
hold. Foremost among these is the relation between the en-
ergy width and the lifetime of a quantum state. In this section
we shall show that for this case an uncertainty relation can be
derived on the basis of the ideas developed in the previous
sections. A completely similar relation holds between the
momentum width and the spatial width of a state.

Let us consider an arbitrary closed system. In quantum
mechanics its states are represented by unit vectors |¥) in a
Hilbert space. We employ the Heisenberg picture so that the
vector representing a state does not change in time. If |y
and |®) are unit vectors, the scalar product (¥|®) is called
the transition amplitude of the states; the square of its abso-
lute value is the probability of finding the system in the state
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|®) if it has been prepared in the state |¥). The system is
supposed to be symmetric with respect to certain transforma-
tions of the inertial space-time frame such as translations in
space and time, rotations, and possibly Lorentz transforma-
tions. In the present article we are only interested in transla-
tions in space and time. These symmetry transformations are
represented by unitary operators in Hilbert space which we
shall denote by U(a,) and U(a), respectively. Thus
U(ay)|¥) is the state which is displaced in space by a; in
the direction k with respect to the state |¥). Likewise,
U(a)|¥) is the state which is translated in time by a with
respect to the state |¥). We may write

Ulay)=exp (—ia;Py), Ul(a)=exp(iaH). 6)

The self-adjoint operators P, and H are the generators of
translations in space and time in quantum mechanics; they
are the counterparts of P, and H of the previous sections and
correspond to the total momentum and energy of the
system.* (We have put #=1 for notational convenience.)

We suppose that P, and H have complete sets of (im-
proper) eigenstates which we denote by |p,) and |E), respec-
tively, where possible degeneracies are ignored to facilitate
notation. Then f|p,Xpildp,=1 and [|E){E|dE=1, where
the last integral may include a summation over discrete
eigenstates. Using this and (6), we obtain

WIU@OI0)= [ e (oI dpy, (k=127
W)

WU = [ eEEL)? aE.

For the purpose of the present section we shall confine atten-
tion to translations in time.

The transition amplitude (W |U(a)|¥) is called the survival
amplitude of the state |¥). The square of its absolute value is
the probability of finding the system, after a time a has
passed, still in its original state |¥). This quantity may be
taken as the starting point for a definition of the lifetime of a
state. We define the time 75 as the smallest time interval
satisfying

(¥|U(rp) W) =8 (B<1). ®)

For example, taking 8= 1/2 in (8), 7 ap is the so-called
half-life of the state, that is, 7 ap 1s the (smallest) time at
which the probability of finding the system still in its original
state has decreased to 50%. From Eq. (7) an ‘‘uncertainty”’
relation between the time 75 and the width of the energy
spectrum |[(E|¥)| of the state |¥) may be derived. There are
several definitions possible of the width of a probability dis-
tribution. The following is a suitable one: Define W, to be
the size of the smallest energy-interval W such that

fW|<E|«1r>|2 dE=a.

W, gives a reasonable measure for the uncertainty in energy
if a is less than but close to 1. For example, if @=0.9 then
W, is the smallest interval on which 90% of the energy dis-
tribution is situated. Then (inserting # again) one can show'*

Btl—a
TgW,=2h arccos —fy ) for B<2a-1. (9

This relation is valid for all states [¥).
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For example, from (9) follows
T\/WW(]g? Ogﬁ

A related relation can be derived if instead of W, the stan-
dard deviation AE is chosen as a measure of the width of the
energy spectrum (however, in many cases of physical inter-
est the standard deviation is not a suitable measure of width).
One then finds'

We have thus obtained satisfactory and general expres-
sions of the ‘‘uncertainty’’ relation between the energy
spread (linewidth) of a quantum state and its lifetime. Note
that the uncertainties in energy and time appearing in (9) are
conceptually very different. This is only to be expected be-
cause time is not an operator. We refer to Refs. 15 and 16 for
an interpretation of 7 as an uncertainty.

Exactly the same procedure can be applied to translations
in space leading to an uncertainty relation between the
spread in the total momentum of a state and its so-called
spatial translation width. A discussion of this relation is
given in Refs. 15 and 17.

Thus are obtained four, completely similar, generally
valid, uncertainty relations between the spreads in the total
momentum and the total energy of a state on the one hand
and its translation widths with respect to space and time on
the other. Evidently, these relations fit easily in a relativistic
formulation of quantum mechanics. Space and time then
merge into space-time and P, and H become the components
of a four vector. In this way, the urge to unite time and space
that has led people, wrongly, to include ¢ in the set of ca-
nonical variables, has indeed been satisfied!

V. OTHER FORMULATIONS

There exist many other formulations of the uncertainty
principle for energy and time on which we shall only com-

ment briefly. Some formulations are simply wrong, such as
the statement® that for a measurement of the energy with
accuracy OE a time 6t>#/SE is needed. This statement is
wrong because it is an assumption of quantum mechanics
that all observables can be measured with arbitrary accuracy
in an arbitrarily short time and the energy is no exception to
this. Indeed, consider a free particle; its energy is a simple
function of its momentum and a measurement of the latter is,
at the same time, a measurement of the former. Hence, if we
assume that momentum can be accurately measured in an
arbitrarily short time, so can energy. Other formulations are
confined to special cases. For example, if the wave packet of
a particle does not spread too fast, an uncertainty relation
between the time at which the particle passes a certain point
in space and the particle’s energy can be derived from the
well-known uncertainty relation between the spreads in the
position and momentum of the particle. Still other formula-
tions depend on first-order perturbation theory such as the
statement that the conservation law of energy may be vio-
lated by an amount 8E during a time 8t=#/8E.'® This state-
ment is misleading because it confuses the energy of the
actual system with the energy of the unperturbed system. A
class of generally valid uncertainty relations has been de-
rived from the quantum vers1on of the equation of motion (2)
by Mandelstam and Tamm.!® For each observable A one
defines an uncertainty in time:
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_AA
._7<_A—>'.
dt

It is then possible to derive the relation 7,AE = 3, where A
denotes the standard deviation. Note the difference between
7, and the coordinate time ¢ appearing in the same formula
(10)! Note also that 7, not only depends on A but also on the
state of the system. Although this approach is conceptually
very different from the one leading to (9), there still is an
interesting connection.!* For a recent comprehensive review
the reader may consult Ref. 20. For a recent textbook we
recommend Ref. 21.

Ta (10)
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to an end.

DOES THE NORTH POLE EXIST

It is difficult to imagine that we could ever be in possession of final physical principles that
have no explanation in terms of deeper principles. Many people take it for granted that instead we
shall find an endless chain of deeper and deeper principles. ...

Popper and the many others who believe in an infinite chain of more and more fundamental
principles might turn out to be right. But I do not think that this position can be argued on the
grounds that no one has yet found a final theory. That would be like a nineteenth-century explorer
arguing that, because all previous arctic explorations over hundreds of years had always found that
however far north they penetrated there was still more sea and ice left unexplored to the north,
either there was no North Pole or in any case no one would ever reach it. Some searches do come

Steven Weinberg, Dreams of a Final Theory (Pantheon Books, New York, 1992), pp. 230-231.
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