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Time evolution of a shifted initial state:

Let ¢(z,t) be the time evolution of an initial function ¢(z) in the field
of the harmonic oscillator. For =y € R define the shifted function by
by () = ¢(x — z0). Its time evolution is given by

2 . .
Guo (T, ) = exp (i % sin 2t> eTi@osint)z b _ 24 cost, t) (7.81)

We can draw some interesting conclusions from this result: Assume that
¢ = ¢p, is an eigenstate of the harmonic oscillator. The eigenstates have a
trivial time evolution, they always remain centered at the origin, the expec-
tation values of the position £ and momentum p are zero for all times. Now,
lets shift the eigenfunction to a new position zg, that is, the new initial state
is given by

Y(z,0) = dn(z — zp). (7.82)
Equation (7.81) gives the following result for the time evolution of the trans-

lated eigenstate:

2
Y(z,t) = exp (i % sin 2t — iE,t —i(zo sint) 3:) ¢n(z —xo cost). (7.83)

In particular, the position probability density is just given by

|9 (2,t)* = |¢n(x — zo cost)|*. (7.84)

Time evolution does not change the shape of |¢,|?, it just translates the

function to its classical position zg cost.

CD 5.19 shows the motion of the initially translated eigenstates ¢,
@2, and their superposition. The evolution of the shifted initial state
shows the motion of ¢; + ¢ as in CD 5.5, while the center of the
wave packet performs the oscillation zg cost.

7.5. Motion of Gaussian Wave Packets

7.5.1. Coherent states

Here we apply the results of the previous section to the ground state ¢g(z) =
r(=1/9) exp(—% z?). Among the eigenstates it is distinguished also by the
property that it is optimal with respect to the uncertainty relation
1
AzAp > 5. (7.85)
The ground state satisfies

AzAp = (7.86)

NI
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For the time evolution of the initially translated ground state we can apply
the results obtained in the previous section. We obtain

1\1/4 2 t — x4)?
b(z,t) = (;) exp(ifi—o sin 2t — 15) exp(ips — (;T%)) (7.87)
with z; = z¢ cost and p; = —x¢ sint. This is a normalized Gaussian function

centered at the average position x; and with average momentum p;. Here
(z¢, pt) describes the classical oscillation of a particle with initial position zg
(in dimensionless units).

CD 5.10 contains movies of a coherent state in position space, mo-
mentum space, and in the energy representation. See also Color
Plate Fi:HOcoh.

We know already that the function y(z,t) is again optimal with respect
to the uncertainty relation (see Section 2.8.1). The state (z,t) hence satis-
fies Eq. (7.86) for all times. The states with minimal uncertainty are called
coherent states. Their motion is most similar to the oscillation of a particle
in classical mechanics. We collect these observations in the following box.

Coherent states of a harmonic oscillator:

The coherent states (states with minimal uncertainty) of a harmonic
oscillator are shifted Gaussian functions, initially localized at xg, which
have the shape of the ground state. The maximum of a coherent state
always follows the trajectory of a classical-mechanical particle that starts
at g with zero initial momentum. The wavelength of the phase always
corresponds to the momentum of the classical particle. During its time
evolution a coherent state retains its shape (the shape of the ground
state) without spreading.

It is a consequence of Exercise 7.10 that the coherent states minimize the
difference between the mean energy and the energy of the classical motion
of (z(t))y and (p(t))y because the coherent states have minimal uncertainty.
One even has the following result: 1 is a coherent state if and only if

%(@i(t) + (@i(t)) =5+ $2>¢(t)- (7.88)

7.5.2. Arbitrary Gaussian function

For the harmonic oscillator potential, the Schrodinger equation with the
Gaussian initial function

a 2

o(x) = (;)1/4 exp(—a —:62—) (7.89)
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has the solution

Wz, t) = (%) v (cost +iasint) /> exp(—a(t) ‘T—Q) (7.90)

where

t+isint
a Cost 41 sin (7.91)

a(t) =
This result can be obtained using the explicitly known integral kernel of the
time evolution. This integral kernel (Mehler’s kernel) will be obtained in a
later section.
One has to be careful with the definition of the square root

cost + iasint

—-1/2

(cost + iasint) (7.92)

in Eq. (7.90). It is necessary to take that branch of the square root that
gives a continuous dependence on t. Hence for @ = 1 this expression will
simply become exp(—it/2).

By combining Eq. (7.90) with Eq. (7.81) one can easily find an expression
for the time evolution of a translated Gaussian function.

7.6. Harmonic Oscillator in Two and More
Dimensions

The wave function of a particle in two dimensions depends on a two-dimensional
position variable x = (z1,z2). The Hamiltonian operator for the harmonic
oscillator in two dimensions can be written as a sum of one-dimensional
Hamiltonians

1 XX
H=——-A+4+"—=
2 + 2
1d> 2?2 14> 3
=532 T3 "3g2 T3
2 dxy 2 2 dzj 2
:Hw1+Hw2>

where H,, (i = 1,2) acts only on the variable z;. Hence we can make the
same observations as in the case of free particles: The Schrodinger equation
in two space dimensions can be solved by a product ansatz

Y(x,t) = ¢1(x1,t) Yo(T2,t), (7.93)
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where each ; is a solution of the one-dimensional harmonic oscillator equa-
tion.

d dip . dyn
GV Ty ety
= (Hz1¢1) Yo + 1 (sz'(/)2)

= (Hey + Hay) 192 = Hep.

If 4y, m is a product of two eigenfunctions ¢, and ¢, of the one-dimensional
Hamiltonian,

Yn,m(X) = ¢n(Z1) dm(z2), (7.94)
then ¥, m(x) is an eigenfunction of H belonging to the eigenvalue Ey
Enm=En+E,=m+n+1, H{Ynm = Enm¥nm. (7.95)
Hence it is clear that
Unm (X, 1) = P m(X) e Emt = @, (21, 1) b (72, 2) (7.96)

is a solution of the time-dependent Schrodinger equation. This solution is a
product of solutions of one-dimensional equations for x;- and z2-coordinates,
respectively. Of course, this does not mean that every solution of the two-
dimensional oscillator is a product of one-dimensional solutions. Neverthe-
less, any solution can be written as an (infinite) linear combination of prod-
ucts as follows.

As a consequence of the fact that the functions ¢, form an orthonormal
basis in the Hilbert space L?(R) it can be shown that the product functions
Yn.m form an orthonormal basis in L2(R?) (this is a property of the tensor
product of Hilbert spaces). Hence every initial function ¢ € L%(R?) can be
expanded as

¢(X) = Z Z Cn,m wn,m(x), (7.97)

n=0m=0
and the unique solution of the Schrodinger equation with initial condition
P(x,t) = ¢(x) is given by
o0 o0
P(x,t) = Z Z Cn,m e_i("+m+1)t¢n,m(X). (7.98)
n=0m=0

The ground-state energy is Eg + Ey = 1 and every solution is periodic with
period 27.

EXERCISE 7.12. Generalize the above considerations to n-dimensions.

If ¢(z,t) is the time evolution of a one-dimensional harmonic oscillator,
then its Fourier transform, the function ¢ (k,t), is also a solution of the
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Schrédinger equation of the harmonic oscillator in one dimension. Hence
the wave function in phase space,

~

V(a,k,t) = (z,t) $(k, 1) (7.99)
is a solution of the two-dimensional oscillator equation.

CD 5.14-5.18 show solutions of the two-dimensional harmonic oscil-
lator. Among the various Gaussian wave packets, the coherent and
squeezed states are of particular interest.

7.7. Theory of the Harmonic Oscillator

7.7.1. Supersymmetry

Define the operators

1 1 d
A= — ip) = —— 7.100
Bero-GEe) o
1 1 d
Al= — (z-ip) = = (—— : 7.101
V2 (z —ip) /2 < dz + :B) ( )
Here p = —id/dz is the momentum operator, and z denotes the position

operator (the operator of multiplication of 1(z) by z). For suitable (differ-
entiable) wave functions you can see by a partial integration that

(6, Ap) = (ATg, ). (7.102)
Therefore, the operators A and A' are formally adjoint to each other.

Schwartz space. For the mathematical investigation it is necessary

to have a dense domain in the Hilbert space L?(R), which is invariant
under the action of the operators A and A!. Such a domain is the Schwartz
space S = S(R). The set S consists of infinitely differentiable functions. The
functions (and all their derivatives) are required to go to zero faster than
any inverse power of |z|, as |z| tends to infinity. More precisely,

!
S= {f € C*(R) ’ for all integers k, I: sup :ckdijf(:v)’ < oo}. (7.103)
z€R z
Typical examples of functions in & are Gauss functions exp(—az?), and
all the oscillator eigenfunctions. Because all finite linear combinations of
functions in S are again contained in S, the set S is a linear subspace of
the Hilbert space L?(R). Theorem 2.2 in Section 2.7 states that the linear
subspace spanned by the functions

Gy(z) = <1)1/4 e?® exp(—?) (7.104)
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3. Wave function in momentum space
4. Wayve function in phase space

CD 5.5. Oscillating state 142
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space
4. Wave function in phase space

CD 5.6. Superposition of three eigenstates (0+ 1+ 2)

1. Wave function in position space
2. Position probability density
3. Wave function in momentum space

CD 5.7. Linear combination of three eigenstates (0+ 1 —2)

1. Wave function in position space
2. Position probability density

CD 5.8. Superposition of ten eigenstates
1. Sum of first ten eigenstates

2. Boltzmann distribution of energies
3. Random phases

CD 5.9. Eigenfunction expansion
1. Build a Gaussian function (interactive experiment)
2. Energy representation
3. Energy representation of a shifted state
4. Time evolution in energy space

CD 5.10. Coherent state (shifted eigenstate)

1. Wave function in position space

2. Position probability density

3. Wave function in momentum space
4. Energy representation

5. Time period and gauge

CD 5.11. Squeezed state (widespread initial localization)
1. Wave function in position space
2. Position probability density
3. Wave function in momentum space
CD 5.12. Squeezed state (sharper initial localization)
1. Wave function in position space
2. Position probability density
3. Momentum space
CD 5.13. Step function
1. Approximation in position space



270 B. MOVIE INDEX

2. Position probability density
3. Momentum space
CD 5.14. Coherent state
1. Phase space motion
2. Circular motion in two dimensions
3. Elliptic motion in two dimensions
CD 5.15. Diagonal motion (surface plots)

1. Coherent state in two dimensions
2. Squeezed state in two dimensions (flat)
3. Squeezed state in two dimensions (sharp)

CD 5.16. Particle at rest
1. Centered squeezed state
2. Asymmetric centered state
3. Squeezed state in phase space
CD 5.17. Phase space motion (contour plots)
1. Squeezed state in phase space
2. Closer to the center
3. Very flat Gaussian state
4. Sharp Gaussian peak
CD 5.18. Circular motion (surface plots)

1. Circular motion of Gaussian
2. Another initial condition
3. Yet another initial condition (“the swimmer”)

CD 5.19. Constant shapes (time evolution of shifted eigenstates)

1. Translated first eigenstate
2. Second eigenstate
3. First+second eigenstate

CD 5.20. Gallery of angular momentum eigenstates

6. Special Systems

CD 6.1. Free Fall
1. Dropping a particle
2. Throwing a particle
CD 6.2. Free fall
1. Exact solution in a linear potential

CD 6.3. Free fall in two dimensions

1. Letting a particle drop vertically
2. Vertical throw of a particle



