
Chapter 1

Periodic systems and the Bloch
Theorem

1.1 Introduction

We are interested in solving for the eigenvalues and eigenfunctions of the
Hamiltonian of a crystal. This is a one-electron Hamiltonian which has the
periodicity of the lattice.

H =
p2

2m
+ V (r). (1.1)

If R is a translation vector of the lattice, then V (r) = V (r + R). To
solve for such a problem, one must first consider the boundary conditions
that the eigenfunctions must satisfy. In a crystal, we require them to be
periodic of period NiRi; (i = 1, 2, 3) for large Ni. Typically, Ni is of the
order of the size of the crystal: N1N2N3 ' 1023! A good basis to describe
such functions are plane waves exp (ik.r). Applying the boundary conditions
to the plane waves implies that the momenta k must be discrete points:
ki = 2πni/NiRi; i = 1, 2, 3 where ni are integers. Practically, for large Ni,
they form a continuous set of points in the reciprocal space. In the following,
we will first introduce and prove Bloch’s theorem which is based on the
translational invariance of the system; then make use of it to simplify the
difficult task of finding the eigenstates and eigenvalues of the infinite crystal
Hamiltonian.
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1.2 Bloch Theorem

Let TR be the translation operator of vector R. TR commutes with the
Hamiltonian. Indeed, the kinetic energy is translationally invariant, and the
potential energy is periodic:

[TR, V ]f(r) = TRV (r)f(r)−V (r)TRf(r) = V (r+R)f(r+R)−V (r)f(r+R) = 0
(1.2)

On the other hand, [TR, TR′ ] = 0. Thus, the Hamiltonian and all the transla-
tion operators of the crystal commute with each other. They possess, there-
fore, a common set of eigenstates.

Let us search then the eigenstates of the translation operators TR. For a
general function satisfying the boundary conditions of the problem, one can
write, after expanding the eigenstate on a plane wave basis, the eigenvalue
equation as follows:

TRf(r) = TR

∑
q
Cq e

iq.r =
∑
q
Cq e

iq.reiq.R = tR
∑
q
Cq e

iq.r (1.3)

where we denoted the eigenvalue by tR. In order for the above equality to be
true, eiq.R must be a constant: q.R = 2πn + constant ⇒ q = k + G where
k is an arbitrary vector and G is a reciprocal lattice vector: G.R = 2πn.
The eigenvalue is therefore tR = eik.R and the eigenvector could be any plane
wave of momentum k + G. The eigenvalue tR being degenerate with respect
to k + G, a general eigenvector associated with this eigenvalue can be written
as:

fk(r) =
∑
G

Ck+G e
i(k+G).r = eik.r

∑
G

Ck+G e
iG.r = eik.ruk(r) (1.4)

The arbitrary vector k labels thus different eigenvalues and eigenstates of
translation operators. Furthermore, the above function is also eigenstate of
all possible translation operators of the lattice. Note that the infinite sum
over all possible momenta q is now reduced to a discrete (still infinite) sum
over the reciprocal lattice vectors, and that is a great simplification in the
problem. We can also notice that all states corresponding to k and any
k + G are equal, i.e. the function fk is periodic in the reciprocal space
fk = fk+G, ∀G. Due to the previously-mentioned commutation relation,
fk is also eigenstate of H. To obtain its coefficients Ck+G, we just need to
insert this wavefunction into the Schroedinger equation. The Hamiltonian
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matrix must therefore be diagonalized in the space of all plane waves of
momentum k + G for any vector k chosen in the first Brillouin zone. Indeed
the periodicity of fk in the reciprocal space implies that it is sufficient to
chose the arbitrary vector k in the first Brillouin zone.

Let us finally state Bloch’s theorem: The eigenstates fk of a peri-
odic Hamiltonian can be written as a product of a periodic function with
a plane wave of momentum k restricted to be in the first Brillouin zone
fk(r) = uk(r)eik.r (with uk periodic in k and in r) ; furthermore fk(r + R) =
eik.Rfk(r).

• Solution of the eigenvalue problem in general

The Schroedinger equation or the eigenvalue problem is written in the
following form: Hψ = Eψ. Different Boundary Conditions (BC) apply for
ψ of a crystal and a cluster. The basis set must therefore satisfy the same
boundary conditions. This means that for an infinite crystal, the basis must
satisfy periodic BCs, whereas for a molecule or a cluster, basis functions must
go to zero at infinity. Let φi(r)i=1,...,N be a finite basis set (hence incomplete
description), and let us expand the eigenfunction ψ on this basis: ψ(r) =∑N

i=1Ciφi(r). We have already seen that minimizing the expectation value
of the Hamiltonian with the constraint of orthonormality (the variational
formulation) is equivalent to inserting the expansion of the wavefunction into
the Schroedinger equation and projecting it onto each of the basis functions.
Both lead to the following set of linear equations:

N∑
j=1

[Hij − ESij]Cj = 0; ∀i = 1, ..., N (1.5)

where Hij =
∫
φ∗i (r)H φj(r) dr and Sij =

∫
φ∗i (r)φj(r) dr are the Hamilto-

nian an overlap matrix elements respectively.

• Solution of the Schroedinger equation in a periodic
box

[− h̄2

2m
∆ + V (r)]ψ(r) = Eψ(r)

The “crystal potential” V (r) is a periodic function: V (r + R) = V (r)
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We will therefore make use of the Fourier decomposition to describe it as:

V (r) =
∑
G

V̂G e
iG·r

where V̂G =
∫
cell V (r) e−iG·r dr/Ω; G’s are reciprocal lattice vectors defined

by G · R = 2nπ, R’s are translation vectors of the crystal lattice and Ω is
the unit cell volume. If {R1,R2,R3} is the basis of the primitive cell, then
the reciprocal lattice vectors are defined by:
Gi · Rj = 2πδij, or more explicitly: G1 = 2π(R2 × R3)/Ω with Ω = R1 ·
(R2×R3) and so on ... We see that the G’s appear naturally because of the
periodicity of the potential.

The BC’s satisfied by the wavefunctions come from Bloch’s theorem:
For every eigenfunction ψ, there exists a vector k such that : ψk(r + R) =
eik·Rψk(r); in other words ψk(r) = eik·ruk(r) where uk is a periodic function.
We see therefore that ψ is not periodic! To solve the eigenvalue problem, one
may take any basis set satisfying the above theorem.

Plane wave method:

One simple and easy choice would be the plane waves: φk(r) = eik·r/
√

Ω
which are eigenstates when V (r) = 0. The eigenvalue equation in this basis
may be written as: ∑

q
[Hkq − E Skq]Cq = 0; ∀k

But Skq = δk,q and Hkq = δk,q k
2/2m + V̂k−q. Therefore, k − q = G

must be a reciprocal lattice vector. So the overlap S is the identity and the
Hamiltonian H couples any arbitrary vector k only to some k + G. The
problem of having to diagonalize an “infinite” matrix H has been highly
simplified to the diagonalization of many smaller matrices (one for each k)
of finite dimension (defined by the number of G’s included in the Fourier
expansion of G). The final solutions for each k are therefore (this is another
statement of Bloch’s theorem):

ψk(r) =
∑
G

Ck+G eik+G·r/
√

Ω

for a Hamiltonian Hk+G,k+G′ = HGG′(k) = δGG′ (k+G)2/2m+V̂G−G′ . Note
that ψk has the additional property of being periodic in the reciprocal space:
ψk(r) = ψk+G(r).
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The number of obtained eigenvalues is equal to the number of chosen
basis functions. The eigenvalues and eigenstates for each k will also be
labeled by an integer λ which is called the band index (λ = 1 corresponds to
the first band, λ = 2 represents the second band and so on...). Hence, the
eigenfunctions and eigenvalues will be denoted respectively by ψλk and Eλk.

The form of the Schroedinger’s equation in the plane-wave basis is:(
(k + G)2/2m+ V̂0 − Ek+G

)
Ck+G +

∑
G′ 6=G

V̂G−G′Ck+G′ = 0 (1.6)

or in terms of different bands λ (corresponding to different G vectors) 1.(
(k + G)2/2m+ V̂0 − Ek,λ

)
Cλ

k+G +
∑

G′ 6=G

V̂G−G′Cλ
k+G′ = 0 (1.7)

In a plane wave calculation, the Fourier expansion has to be truncated at
some Gmax corresponding to a cutoff energy of Ecutoff = h̄2G2

max/2m. This
basically defines the smallest wavelength one uses to describe the potential
and the charge density. It only depends on the nature of the elements one is
treating and not on the unit-cell size. However, the number of plane waves
(G’s) used in a calculation relate the two through: NPW ' G3

maxΩ ' E
3/2
cutoffΩ.

The cutoff energy should be chosen such that the total energy of the system
has converged as a function of the latter. To achieve such convergence, rather
high cutoff energies are required. In practice, however, usually differences in
total energies are of interest. In this case, smaller cutoffs will be sufficient
since systematic errors due to lack of convergence will cancel each other out.

Periodicity, broken symmetry and gap openings:
The effect ofperiodicity on the band structure can be investigated by solving
exactly solvable models such as the Kroenig-Penney model in one dimension
2 Here, however, we will use the perturbation approach, where analytical
formulas are available for the eigenstates and eigenvalues. Assuming the
potential is weak, one can expand the eigenvalues and eigenstates in powers of

1In the absence of a periodic potential, there is a one to one correspondance between a
band labeled by λ and a reciprocal lattice vector G, so that Ek,λ = Ek+G and Cλ

k+G = 1
and Cλ

k+G′ = 0 for all other G′. In the presence of a weak periodic potential, a perturbative
argument shows that these coefficients slightly vary from 1 and 0

2the potential is either that of a superlattice i.e. constant with different values in 2
chosen intervals, the sum of which is the period of the lattice; or it can be a “comb”
function (sum of Dirac delta functions).
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the potential.To first order in the eigenstates and second order in eigenvalues
we have:

ψλk = ei(k+G).r +
∑

G′ 6=G

ei(k+G′).r V̂G−G′

Ek+G − Ek+G′
(1.8)

Eλk =
(k + G)2

2m
+ V̂0 +

∑
G′ 6=G

|V̂G−G′|2

Ek+G − Ek+G′
(1.9)

this expansion is valid whenever V̂G−G′ � |Ek+G − Ek+G′|. We can there-
fore note that near the zone boundaries, where there is degeneragy, the de-
nominator can become zero, and the expansion breaks down. In this case,
one will keep in the expansion only the terms that have small denominator,
the contribution of others being small in the V̂ → 0 limit, as they are in
V̂ 2. The divergence in the denominators happens for the Bragg condition
Ek+G = Ek+G′ implying either k = 0 and |G| = |G′|, or, k = G1/2 and
G = 0;G′ = −G1 where G1 is the smallest vector of the reciprocal lattice.
Here, for simplicity, we will restrict ourselves to the one-dimensional case
where we only have two-fold degeneracies and diagonalizations can be done
analytically. The Hamiltonian matrix in the case where there is only two-fold
degeneragy (or near degeneracy) is:[

Ek+G V̂G−G′

V̂ ∗
G−G′ Ek+G′

]
=> ε± =

Ek+G + Ek+G′

2
±

√
∆2 + |V̂G−G′|2

with ∆ = (Ek+G − Ek+G′)/2. At the exact Bragg condition where ∆ =
0, we have splitting of the two eigenvalues by the perturbation: ε± =
Ek+G ± |V̂G−G′|. So, the two degenerate bands become separated by a
gap given by 2|V̂G−G′|. As we previously said, this can happen at the zone
center or boundary where the group velocity ∇kE is also equal to zero.
The eigenstates are then either the sum or the difference of the two plane
wavesψ± = ei(k+G).r ± ei(k+G′).r which are reduced to a sin and cos function.
Near the zone boundary, however, where there is near degenearcy, the term
∆ is small but nonzero. Qualitatively, the level repulsion still persists and
the gap is even larger than at the zone boundary. It can be verified that the
eigenstates become the product of the sin or cos functions times an enve-
lope function of large wavelength. This wavelength being the inverse of the
distance of the actual wavenumber from the zone boundary δ = k−G1/2.

Note that for the higher bands, the difference of the G vectors becomes
larger, and since usually V̂G is a decreasing function of G, the gaps become
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increasingly small for higher energy bands. The difference between a metal
and a semiconductor is in the position of the Fermi level. If the latter lies
within a band, one is dealing with a metal, and if it is in the gap (fully filled
bands), one is dealing with a semiconductor.

Tight-binding or LCAO method:
In cases where some electronic states are very localized, it would take a large
number of plane waves to describe them. Examples are core electrons in
all-electron calculations, and d and f orbitals in transition metals and heavy
atoms. In this case, one might prefer to expand the wavefunctions on local-
ized, atomic-like basis functions. This method is called Tight-Binding (TB)
or LCAO (standing for Linear Combination of Atomic Orbitals). Sometimes,
TB also refers to semi-empirical methods in which the hopping matrix ele-
ments between neighboring atoms are determined from a fit to ab-initio or
experimental data. Such a choice of basis also exists in mixed-basis methods,
where the basis consists of both plane waves, to describe extended elecron
states, and atomic-like orbitals to describe localized electron states. In a
periodic system, the proper form of the basis functions satisfying Bloch’s
theorem should be:

φτα
k (r) =

∑
R

bα(r−R− τ) eik·R/
√
N

where the function bα(r − R − τ) is an atomic-like orbital localized on the
atomic position labeled τ within the unit cell defined by R, and α is the
orbital index (s, px, py, pz...).

Note that this expression is manifestly G-periodic (i.e. periodic in the
reciprocal space). This change of basis from (R, τ, α) representation to the
Bloch basis: (k, τ, α) is just a unitary transformation which makes use
of the Bloch theorem (φτα

k (r + R) = φτα
k (r) eik·R) to make the matrix of

Hamiltonian, as we will show below, block-diagonal, meaning that:

< φτα
k |H|φτ ′α′

k′ >∝ δk,k′+G

which is a great simplification of the diagonalization problem. The size of
each bloch for a sampling k-point in the FBZ, is equal to the total number
of orbitals present in the unit cell: (

∑
τα 1=size of the Hamiltonian matrix in

the Bloch basis).
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< φτα
k |H|φτ ′α′

k′ > =
∑
RR′

1

N
e−ik·R eik′·R′

< bα(r−R− τ)|H|bα′(r−R′ − τ ′) >

=
∑
RR′

1

N
e−ik·R eik′·R′

fτα,τ ′α′(R−R′)

=
∑
R

1

N
e−i(k−k′)·R ∑

R”

e−ik′·R′′
fτα,τ ′α′(R′′)

= δk,k′+G [
∑
R′′

e−ik′·R′′
fτα,τ ′α′(R′′)] (1.10)

showing the decoupling of different k vectors within the first Brillouin zone.
Use of translational symmetry was made going from the first to the second
line.

Note that the sum over R′′ involves only a small number of terms for
which the hopping integrals fτα,τ ′α′(R′′) are nonzero. A similar expression
holds for the overlap matrix, and one can, for each chosen k-point in the first
Brillouin zone, solve the generalized eigenvalue problem with a matrix of size
much smaller than in the plane wave method.

As will be shown in the exercises on the linear chain, the bandwidth
wihin the TB formalism is proportional to the hopping integrals, and N -fold
degenerate atomic levels fan into a continuum of width 4t as the interatomic
distance becomes smaller and the hopping integral gets larger.

Figure 1.1: Energy levels of the system as at the atoms get closer to each
other, and the hopping integral increases. The bandwidth essentially scales
with the latter.

First Brillouin Zone and general considerations:
The LCAO Hamiltonian for k and any k + G however, has the same ma-
trix elements. This is similar to the plane wave method, where both the
Hamiltonian and its eigenstates were shown to be periodic in k. Due to this
periodicity in the reciprocal space, there is no need to treat all k’s; one only
needs to treat the k’s inside the First Brillouin Zone (FBZ) which is the
Wigner-Seitz cell of the reciprocal space. In practice, for numerical calcula-
tions, involving integrations over the k-points in the FBZ, one has to choose
a grid of k-points. Because of the symmetries of the cell, if any, one needs to
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consider only the k-points in some portion of the FBZ. Furthermore, some
special k-points may be used to increase the computational efficiency. For
more details about this topic, one may refer to the following papers:

• M. J. Mehl, et al., Phys. Rev. B 41, 10311 (1990);

• H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
or consult the following homepage to download k-point sets:
http://dave.nrl.navy.mil/bind/kpts/index.html

Using the power of Bloch’s theorem, one has been able to reduce the
problem of diagonalizing an “infinite” Hamiltonian matrix, to diagonalizing
a finite matrix (treating the atoms of the unit cell only) but for all the k-
points in the FBZ. For metals or systems without a gap, the mesh should be
a fine one, but for semi-conductors or insulators where the gap is non-zero,
one may take a coarser k-point mesh. In any case, checks must be performed
to make sure of the convergence of the results as a function of the number of
k-points taken in the FBZ.

• Band Structure and Density Of States (DOS)

In an electronic structure calculation based on the density-functional or
Hartree-Fock theory, once the self-consistency iterations have converged, one
obtains the ground state charge density and the crystal potential. Using
the eigenvalues at the k-points taken in the FBZ, one may also extract the
density of states (DOS). After this calculation, one may also obtain the band
structure curves by chosing another set of k-points taken along the symmetry
directions in the FBZ, and calculating the eigenvalues for these k-points by
using the converged and self-consistent charge density and crystal potential.

The DOS is defined (including the spin degeneracy) as

DOS(E) = 2
∑
λk

wkδ(E − Eλk)

If a fine k-grid is chosen, one can replace the delta function by a broadened
Gaussian and perform the sum numerically. The broadening must be large
enough or k-grid fine enough so that the delta contribution of each grid point
does not appear as a spike in the DOS; and it should not be too large as to
wash out the finer details of the DOS curve. The weighting factor wk are there
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first to assure proper normalization3 The best method for calculating the
crystal DOS, is the tetrahedron method. In this method, one has calculated
the eigenvalues at some k-points in the FBZ. It is possible to connect the
k-points nearest to each other to obtain small tetrahedra (in 3D) or triangles
(in 2D). One then assumes for each band a linear E(k) in this region, and
integrates over the tetrahedron volume analytically:

DOS(E) ∝
∑
λ

∫ dSλk

|∇kEλk|

For the integration over the full volume of the FBZ, one also needs the energy
eigenvalues at the zone boundaries and symmetry directions. These special
points would come into the calculation with a different weight. Likewise, the
band energy and the ground state charge density are a weighted sum of the
eigenvalues and square of the eigenvectors respectively, over the FBZ:

Eband =
∑
λk

wkEλk ; ρ(r) =
occupied∑

λk

wk |ψλk(r)|2

Eband is the total energy for a non interacting system. If interactions are
present, even within a mean-field theory, a double counting correction term
must be subtracted from this energy.
The general flowchart of a band structure calculation is described below:

3typically for a k-grid not following any symmetry, wk = 1/Nk so that the sum is not
proportional to the number of chosen k-points, and is properly normalized to the number
of bands times number of spin states. In case there is a symmetry in the k-grid, different
k-points might have different weights.
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Initialization: Atomic Positions and Parameters,
Unit Cell: R and G Vectors, Special k-points

?

Assume Initial Charge Density

?

Calculate Crystal Potential

?

Do loop over k-points in the FBZ

?

Calculate Matrix Elements of H(k) and S(k)

?

Diagonalize to get eival Eλk and eivec ψλk

?

-

Calculate New Charge Density ρ(r) (by Mixing or Broyden)

?

�������

PPPPPPP

PPPPPPP

�������ρ,Eλk converged?
NO

-

YES
?

Store Charge and Crystal Potential

?

Do Loop over k-points for Band Structure

?

Calculate Matrix Elements of H and S using the self-consistent potential

?

Diagonalize to get eival Eλk → store for Band Structure

-


