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There exist two methods for generating families of isospectral Hamiltonians: one based on a
theorem due to Darboux and the second due to Abraham and Moses based on the Gel"fand-Levitan
equation. Both methods start with a general Hamiltonian operator H = —d /dx + V(x), and gen-
erate infinite families of new Hamiltonians all with the same eigenvalue spectrum. The new spec-
trum corresponds either to the addition of new bound states with specified energy eigenvalues or to
the deletion of bound-state eigenvalues. Neither process (addition or deletion) alters the reflection or
transmission probabilities, although the amplitudes experience a phase change consistent with
Levinson's theorem and the change in the number of bound states. In this paper we show that these
two methods of generating families of isospectral Hamiltonians are, in general, inequivalent.

I. INTRODUCTION

There is a widespread misconception among physicists
that, for a particle in a one-dimensional confimng poten-
tial, a complete knowledge of the energy spectrum is suff-
icien to determine the potential uniquely. For example,
most physicists regard equally spaced energy eigenvalues
as

signaling
that the potential is necessarily proportional

to x, as in the harmonic oscillator. In fact, as an exam-
ple of a more general procedure, Abraham and Moses'
(AM) have explicitly constructed families of anharmonic
potentials which give rise to the harmonic-oscillator ener-

gy spectrum. Their procedure, based on the Gel'fand-
Levitan equation, when applied to an arbitrary initial
Hamiltonian H, allows the construction of continuous
families of isospectral Hamiltonians, i.e., new Hamiltoni-
ans with the same eigenvalue s ectrum as H. There also
exists an alternative procedure ' for generating families
of isospectral Hamiltonians, which is based on a theorem
for second-order linear differential equations discovered
over a century ago by Darboux. ' With this procedure,
starting with any initial Hamiltonian H with a ground-
state energy Eo, one can generate a one-parameter family
of new Hamiltonians all of which have the same eigen-
value spectrum as H except for the occurrence of a new
ground-state energy E i. The value of E
selected at will; it is subject to only one constraint: name-
ly, E i & Eo Similarly. , the Darboux construction can be
used (as long as the ground state of H is bound) to con-
struct a unique new Hamiltonian which shares the same
eigenvalue spectrum as H except that Eo has been deleted.
Obviously these alternate procedures, either inserting a
new ground-state eigenvalue or deleting a (bound)
ground-state eigenvalue, can be applied iteratively. It
should be noted that neither the Darboux nor the AM
method is restricted to Hamiltonians with a confining po-
tential. They can be applied to one-dimensional Hamil-

tonians with completely arbitrary potentials.
This article is the first of a series of papers exploring

various procedures for generating families of isospectral
Hamiltonians. A subsequent article' demonstrates yet a
third general method for creating families of Hamiltoni-
ans which share a common eigenvalue spectrum. The re-
lations between the three main procedures will be exam-
ined in more detail in a third article, using the techniques
of isometric operators. Yet more families of isospectral
Hamiltonians, generated by iterative combinations of the
three basic procedures, will be treated in a fourth paper, 9

which will also summarize the relationships between all
the methods considered.

The purpose of this first article of the series is to
demonstrate the inequivalence of the AM and Darboux
procedures for generating families of isospectral Hamil-
tonians. For scattering potentials, i.e., potentials which
converge to zero faster than x ' as

~

x
~

~ oo, the differ-
ences between the Darboux and AM constructions become
particularly transparent. If one inserts a new (or deletes
the old) ground-state eigenvalue, the two procedures gen-
erate different families of new Hamiltonians with the
same eigenvalue spectrum but differing reflection coeffi-
cients and "norming constants. " For an arbitrary poten-
tial, the Darboux and AM procedures are equivalent only
for the following case. Suppose one first deletes the
(bound) ground-state eigenvalue Eo of H and then reintro-
duces a new ground state with the same energy Eo, using
either the Darboux construction or the AM procedure for
both steps. The two methods then yield the same one-
parameter family of Hamiltonians having the energy
eigenvalue spectrum of the original Hamiltonian. Fur-
thermore, the same result could be obtained in one step
using the AM technique to "renormalize" the original
ground state. This fact was used by Nieto' to analyze the
relations between supersymmetric partner Hamiltonians,
the general Darboux procedure, and the AM technique for
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"renormalizing" the ground state.
This article is organized as follows. In Sec. II, we sum-

marize the main features of the Darboux construction for
both confining and scattering potentials. The correspond-
ing results for the AM procedure are summarized in Sec.
III. These two sections establish a uniform notation and a
convenient reference for the main part of the paper, mak-
ing this article essentially self-contained. The relationship
between the two procedures is analyzed in Sec. IV. There
we demonstrate that the two methods are in general ine-
quivalent when used to add a new or delete the old
ground-state eigenvalue, and we also derive the exception-
al cases in which the constructions are equivalent. In Sec.
IV we also show that the two procedures are always
equivalent when they are used to "renormalize" the
ground state. Finally, we summarize our conclusions in
Sec. V.

Before concluding this Introduction, we briefly survey
the physics literature in which the Darboux procedure has
been exploited. Variations and special cases of the Dar-
boux procedure have been developed by many authors
(often, it would appear, unaware of Darboux's work).
Thus the factorization method developed by
Schrodinger" and extended by Infeld and his collabora-
tors' is in its essence a special case of the Darboux pro-
cedure. Crum'~ generalized the Darboux construction,
and his work stimulated interest in the use of the pro-
cedure in the inverse scattering problem. Krein' and
Faddeev" have made significant applications of the
method to the three-dimensional inverse scattering prob-
lem, assuming spherical symmetry, while Deift and Tru-
bowitz have used it in their analysis of the one-
dimensional problem. Also considering three dimensions,
Baumgartner, Grosse, and Martin'6 have exploited the
method to develop theorems on level ordering in potential
models. Applications of the Darboux construction to so¹
ton theory' arise through the application of inverse-
scattering methods to the solution of the Korteweg —de
Vries equation. Supersymmetric quantum mechanics'
succeeds in combining two essentially isospectral Hamil-
tonians into a single Schrodinger equation by introducing
additional fermionic degrees of freedom. The two super-
symmetric partner Hamiltomans are related by a special
case of the Darboux construction. ' Lastly, Adrianov,
Borisov, and Ioffe' have used the method to delete the
ground-state eigenvalue of a one-dimensional system,
while Mielnik, using a procedure mathematically
equivalent to Darboux's method, has constructed anhar-
monic oscillator Hamiltonians which are isospectral with
that of the harmonic oscillator. Deift provides a very
thorough exposition of the Darboux procedure, treating it
as a special case of a more general "commutation formu-
la."

II. THE DARSOUX CONSTRUCTION

+ V(x) f(x)=Eg(x),

where E is an arbitrary parameter. Let P be a particular
solution ' of Eq. (1) corresponding to a specific value e of
the parameter E I.f E&e then

is the general solution of the equation

Hg(x) =Eg(x),
where

+ V(x),
dx

2

V(x) = V(x) —2
2 in[/(x)],

and 8'(f g) =[f(dg/dx—) (dfldx)g—) is the Wronskian of
f(x) and g(x). It is easy to verify these results by direct
substitution.

We impose the constraint that ((t(x} be free of all real

finite zeros, in order that V(x) may be free of singulari-
ties. This requirement can be met only if @ &ED, where
Eo is the ground-state eigenvalue of H. Initially, we con-
sider e (Eo, postponing consideration of e=EO until Sec.
IIC. This condition on e ensures the existence of a solu-
tion of Eq. (1) with E =@ satisfying the boundary condi-
tion

0~a~ (x) . (8)

A. Insertion of a new ground state

Let P(x) be the zero-free solution of Eq. (1) (with
E =@) defined by Eq. (7), where e is smaller than the
ground-state energy Eo of H. The Darboux theorem
leads to the following remarkable results: the eigenvalue

spectrum of H, given by Eq. (4), is identical with that of
H except for the addition of a new ground-state eigen-
value E ~

=e. Furthermore, the normalized ground-state
eigenfunction of H is given by

(x)=a' '

u(x)~0 (x~ —~),
and free of zeros for finite real x. The general solution of
Eq. (1) with E =e is then

P(x)=u(x} a+ J dy[u(y)] (7)
J

The condition that tI}(x) has no real zeros (finite or infi-
nite) is met by requiring

In this section we summarize the major features of the
Darboux construction, which can be used to generate fam-
ilies of isospectral Hamiltonians starting from any non-
relativistic one-dimensional Hamiltonian. Darboux s
theorem5 6 can be stated as follows. Let g be the general
solution of the Schrodinger equation

while the normalized excited state eigenfunctions are

f„(x)= —(E„—e) '~'((}(x) g„(x)
dx 4(x)

(n )0) . (10)



33 NEW SCHRODINGER EQUATIONS FOR OLD: INEQUIVALENCE. . . 433

The condition that P(x) has no real zeros, finite or infi-
nite, is necess~ in order that P i be normalizable. The
eigenfunctions P„(x), n & —1, defined by Eqs. (9) and (10)
are normalized to unity and (when supplemented by the
scattering solutions) can be shown to form a complete set.

P(k,x)~e' +R(k)e '~ (x~ —oo),

f( k,x)~ T(k)e' (x~+ oo ) .

(1 la)

(1 lb)

W'e now set e—=E ] = —K QEO and introduce a new2

ground-state with energy e by the procedure described in
Sec. IIA. Equation (2) may be used to canstruct the
scattering solutions of Eq. (3} fram those of Eq. (1). The
refiection and transmission amplitudes R (k) and T(k) for
the new Hamiltonian H may then be expressed in terms
of the corresponding amplitudes for H by

R(k) = —e' '"'R (k), T(k) =e~@"'T(k),

where

(12)

$. Scattering

In this section, we assume that the potential V(x) de-
creases to zero sufficiently rapidly as x ~+ ao for there to
exist scattering states with energy k~ and eigenfunctions
f(k,x) having the asymptotic behavior

ground state removes the ambiguity in the potential
represented by the freedom to choose the value of a.

2

H =H 2[—info(x)] .
X

(18}

If this procedure is applied to any member of the one-
parameter family of Hamiltonians constructed in Sec.
II A, then we recover the original Hamiltonian H. In this
sense, then, the present procixlure is the converse of that
treated in Sec. II A.

C. Deleting the old ground state

In Sec. IIA we showed that if P(x) was a solution of
Hg=eg with e &Eo, where Eo is the ground-state eigen-

value of H, then the new Hamiltonian H, Eq. (4), has the
same eigenvalue spectrum as H except for the addition of
a new ground-state eigenvalue E i

——e. In this section we
remark that if the ground state of H is bound, we can
construct a new Hamiltonian 8 whose eigenvalue spec-
trum differs from that of H only in that the ground-state
eigenvalue Eo has been deleted Th. is is achieved by set-
ting E=Eo in Eq. (1) while keeping the definitions of
H(x) and V in Eqs. (4) and (5). In this case, consistency
requirements force the choice P(x)=go(x), so that the
Darboux construction yields a unique new Hamiltonian

—K+lk
+K+1k

(13) D. Iterations galore

It follows that the reflection and transmission probabili-
ties produced by the new potential are exactly the same as
those produced by the original potential. However, there
is a change in the scattering phase shift of amount 5(k).
We note that 5(0)—5(oo)=ir. This is exactly what we
should expect according to Levinson's theorem, since we
have added one extra bound state.

If there are bound states, the potential is not uniquely
determined from R (k) together with the bound-state en-

ergy eigenvalues, even if the potential converges to zero
faster than x as

~
x

~
-+oo. The necessary additional

data are the "norming constants" for the bound states. If
1f„(x),n &0, is a bound-state eigenfunction of H, normal-
ized to un1ty, corresponding to the e1genvalue E„=—K„,
then the norming constant C„of the state is defined to be

C„= lim [exp(K„x)g„(x)] (14)

The norming constant C„ for 11„(x), n & 0, can be shown
to be

The Darboux procedure can be iterated in a variety of
ways, either inserting or removing a ground-state eigen-
value at each stage. Here we consider only the removal
of the ground state followed by reinsertion of a new state
with the original ground-state energy.

The first step proceeds as in Sec. IIC to create a new

Hamiltonian H given by Eq. (18). This Hamiltonian is
uniquely determined, and has eigenvalues E„, n & 1. For
the second step, one first recognizes that the most general

A A A
zero-free solution of HP(x)=E&P(x) is, up to a normali-
zation constant,

P(x) = 1

Po(x)
1+7 p OX (19)

The final Hamiltonian H =H —2(dz/dx )1np(x), is iso-
spx:tral with the original Hamiltonian H and is given by
H=( —d /dx )+V(x), where

V(x)= V(x)

K+K~ C„. (15)

2 X—2
2

ln 1+/ dg 0 g (20)

To find the norming constant C i for the new ground
state with eigenfunction P, (x), we first define a by

cr= lim [e u(x)) .

The desired norming constant is then

C i
——a '/of

We see that specifying the norming constant of the new

III. THE ABSVQiAM-MOSES RESULTS

In this section we summarize those results of Abraham
and Moses' which are most relevant to our work, after
first translating them into the notation of the present pa-
per. Spa:ifically, we display the expressions these authors
obtain for the new Hamiltonian and its eigenfunctions for
three special cases: the introduction of a new (bound}
ground state at a lower energy than that of the original
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V(x) = V(x)+2 E(x,x)

d'= V(x) —2 ln[1+yI(x)],
dx

(23}

instead of by Eq. (5}. If itt(x) is any solution of Eq. (1) for
arbitrary E, then

P(x) =g(x}+f dy K(x,y)P(y) (24)

is a solution of Eq. (3) with H given by Eqs. (4) and (23).
To insert a new (bound} ground state with energy

E i ~Eo, we choose e=E i and y&0. The new paten-

tial V is given by Eq. (23). The normalized eigenfunction
for the new ground state is

i(x)=y'~' (y &O) .
1+yI x

(25)

If V(x) is a scattering potential, then the norming con-
stant of the new ground state is

c- =", (26}
$0'

For other bound states, the eigenfunctions i)'l„(x) are
determined from g„{x)using Eq. (24) together with Eqs.
(21) and (22), and are already normalized to unity. How-
ever, if V(x) is a scattering potential, the norming con-

stant is changed to C„given by

(27)
K—K~

For scattering solutions, it is obvious that

Hamiltonian, the deletion of the original ground state, and
"renormalization" of the original ground state. For the
first of these, the insertion of a new bound state, we also
state the effect of the procedure on the refiection and
transmission amplitudes and on the norming constants of
bound states.

For the specialization of the AM method to each of
these processes, one starts with a solution u (x}of Eq. (1)
(with a particular value e chosen for E) which satisfies
the boundary condition Eq. (6). Of central importance in
the AM procedure is the kernel E(x,y) which, for the
three special cases considered here, is given by

yu (x)u (y) (21)
1+yI{x)

where y is a constant and

I(x)= f dy[u(y)]2. (22)

The permissible range of values for the constant y de-
pends on the specific process chosen, in a manner to be
explained later.

In all three of the cases considered here, the new Ham-
iltonian generated by the AM method may be written as

H in Eq. (4), but with V(x) given by

—K +Ek

+x+ik (29)

To remove the (bound} ground state of the original
Hamiltonian, we choose e=EO, so that (apart from nor-
malization) u(x)=—$0(x). In this case, one must set
y= —1. From Eq. (23) together with the normalization
condition for $0(x), it follows that

00

V(x)= V(x) —2 i ln f dy[$0(y)] (3O)

The normalized bound-state eigenfunctions of H are
f„(x), n & 1, given by Eq. (24) with u (x) in Eqs. (21) and
(22} set equal to $0{x }.

Finally, to "renormalize" the original (bound} ground
state, we set e=Eo, u(x)=$0(x), and choose y& —1.
The new potential is again given by Eq. (23). For n & 1,
the normalized eigenfunctions of H are given by Eq. (24)
with u (x)=$0(x) in Eqs. (21) and (22), while the new nor-
malized ground-state eigenfunction is given by

pro(x) =(y+1)'~' (31)1+yI x

=e"+ 'u(x) a+ f dy[u(x)] (32)

where A and 8 are integration constants. Also, g ~(x)
given by Eq. (8) must be identical with g i(x) given by
Eq. (25). This yields

l+r
1/2

[u (x)] u+ f dy [u (y)] . (33)

Comparison of Eqs. (32} and (33) shows that, for all
values of x,

IU. COMPARISON %'ITH THE
ABRAHAM-MOSES TECHNIQUE

In this section we show that except for a few special
cases the Darboux construction leads to families of new
Hamiltonians which are inequivalent to those generated
by the method of Abraham and Moses. '

In Sec. Ill we reproduced results obtained by the AM
technique for three spix:ial cases: namely, insertion of a
new ground state, deletion of the original ground state,
and renormalization of the original ground state. ~e also
presented the effects of the AM construction on the re-
fiection and transmission amplitudes and an the bound-
state norming constants.

First, let us compare the techniques for inserting a new
ground state with energy E i & Eo. If the two techniques
are to agree, then V(x) as given by Eq. (5) together with

Eq. (7) must be identical with V(x) given by Eq. (23).
This is possible only if

1+/ p Q p'

R(k)=R(k),
while the new transmission amplitude is

(28) CXu(x)=
. y.

(34)
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In this equation, 8 must be chosen to be positive in order
to satisfy the boundary condition Eq. (6). When Eq. (34)
is substituted into Eq. (1), we find that V(x) must be a
constant so that the original qiunitum system with Hamil-
tonian H is essentially a free particle. For simplicity, we
may choose V(x}=0, in which case e=E,=—8 . If
M {x},given by Eq. {34},is substituted back into either Eq.
(32) or Eq. (33), then consistency requires that a and y be
related by

(35)

g gC —1/2 —A /2 Bcr (1/2 —A /2 (41)

It is easily verified that Eqs. (40) and (41) are consistent
with Eq. {37). The condition that $0(x) be normalized to
unity yields

The potential V(x) which gives rise to the ground-state
eigenfunction $0(x), given in Eq. (40), can be computed
from V(x)=EO+[rI $0(x)/dx ]/$0(x), and is given by

Hence the Darboux construction and the AM technique
can yield the same results when used to insert a new

ground state only if one starts from the free-particle Ham-
iltonian. In fact, for this special case, one can show that

the potential V(x) for the new system is a particular case
of the modified Poschl-Teller potential2

A,(A, —1}82
(36)

cosh [8(x —a)]
with A, =2 and a an arbitrary real constant.

The inequivalence of the Darboux and AM methods be-
comes more transparent when V(x) is a scattering poten-
tial. Comparison of Eqs. (12) and (13) with Eqs. (28) and
(29), and Eq. (15) with Eq. (27) shows that while the two
procedures have the saine effect on the transmission am-
plitude, they have quite different effects on both the re-
flection amplitude and on the norming constants of any
bound states of the original Hamiltoman. Hence the only
initial Hamiltonians H for which they could be expected

to produce the same family of new potentials H must be
ones which have no bound states and which produce a
vanishing reflection coefficient. These conditions unique-

ly detexrriine the class of Hamiltonians with constant po-
tentials, i.e., free-particle Hamiltonians.

We next compare the two methods when they are used
to eliminate a bound ground state. If the two procedures

are to agree, then H given by Eq. (18}must be identical

witll H glveii by Eq. (4) with V(x) glveil by Eq. (30).
Hence we conclude that

y y
2 ~

—A —BX (37)

where as before A and 8 are integration constants. After
differentiating Eq. (37) and rearranging terms, we find

dgo(x}
+8/0(x) =e"+ [$0(x)]

dx

V(x)=—

(38}

The general solution of this equation is

(e A+Ex+( e —Br)
$0(x) 28

(39)

Po(x) = E
cosh[8 (x —a)]

(40}

where C is an integration constant which must be positive
in order that $0(x) be free of singularities. This result can
be rewritten as

V(x) —Eo ~8 —22 8
cosh[8 (x —a)]

(43)

This potential is a particular case of the modified Poschl-
Teller potential, Eq. (36). Indeed it is precisely the new

potential V(x) which one obtains when one creates a
bound ground state starting from the free-particle Hamil-
tonian. In summary, only if V(x) is given by Eq. (43) do
the Darboux and the AM methods for removing a ground
state yield the same results.

Finally, we consider the results of first removing the
(bound) ground state and then reintroducing a new ground
state with the same energy eigenvalue, as was discussed in
Sec. DD. The final potential obtained in this way by the
Darboux construction is given in Eq. (20). Comparison of
that equation with Eqs. (23) and (22) shows that this par-
ticular two-stage process using the Darboux construction
is always equivalent to renormahzation of the ground-
state eigenfunction by the AM technique. This
equivalence has been noted and used by Nieto' in his
analysis of the relation between the general Darboux pro-
cedure and the special case of supersymmetric partner
Hamiltonians.

V. CONCLUSIONS

In thi's article we have compared two procedures for
constructing families of isospectral Hamiltonians, and
shown them to be inequivalent except for a few special
cases. This result is of physical importance since physi-
cists frequently face the problem of determining a poten-
tial from such data as the energy eigenvalues of a system.
What minimum data is necessary to uniquely determine
the potential? Inverse-scattering theory ' provides one
class of potentials for which one knows what input data
suffices to determine a unique one-dimensional potential.
This is the subclass of scattering potentials which decrease
to zero faster than x for large values of

~

x
~
. For this

restricted class the potential is uniquely determined from
the refIection coefficient together with the bound-state en-
ergies and norming constants. However, uniqueness is
lost for potentials which converge to zero no faster than
x as

~
x

~

-+ ao. For confining potentials we are
unaware of any theorems which specify the minimum in-

put data, over and beyond the energy eigenvalues, suffi-
cient to determine a unique potential. In the absence of
any suitable selection criteria, we expect there to be a host
of inequivalent procedures giving rise to different families
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of Hamiltonians yet all sharing a common eigenvalue
spectrum. Indeed, one of us has recently discovered yet a
third inequivalent procedure for generating infinite fami-
lies of isospectral Hamiltonians, and has shown that yet
more families can be created by mixing the three known
procedures in an iterative manner.
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