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5 Uncertainty Relations

than within its Compton wave length,

sz—h—z—h—:/lc. (5.87)
Ap c
Attempting to achieve better localization, the uncertainties of energy and momen-
tum grow so much that the creation of new particles becomes energetically allowed
and the problem loses its single-particle character. Then, one needs to use the full
relativistic quantum field theory instead of quantum mechanics.

5.11
Spatial Quantization Revisited

As discussed in Section 1.8, the angular momentum of a quantum system is quan-
tized as integer or halfinteger (for spin) multiple of /i. We exclusively use the an-
gular momentum in units of # [compare (4.34) and (4.68)]; we still denote the di-
mensionless orbital momentum vector as £. If one experimentally singled out a
direction z in space and measured the angular momentum projection {> = m
onto this direction, for example, with the Stern—Gerlach set-up, there are (2{ + 1)
possible results with values of m changing from —¢ to +{. Due to the isotropy of
space, the same quantization would be revealed with any choice of the quantization
axis. Since the maximum possible projection is ¢, it would be natural to assume
that the length of the angular momentum was V&7 = ¢. This however would be
incompatible with the uncertainty relation.

Let us assume that the particles under study have no intrinsically specified direc-
tion. Applying the Stern-Gerlach fields with various orientations, we equiprobably
obtain all possible values of the angular momentum projections (of course for each
particle, only one given projection can be measured). An average value of £ over a
large number of measurements (here, the measurements refer to different experi-
mental set-ups) is equal by virtue of isotropy to

P=01+82+8=3. (5.88)
Since the possible results are quantized, this average value is
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By calculating the sum of squares of integer numbers, we obtain
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We conclude that the average value of the “length” of the angular momentum vec-
tor equals /(¢ + 1) and thus, always exceeds the maximum projection of this vec-
tor onto any direction, Figure 5.13.
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Figure 5.13 Spatial quantization of angular momentum and the precession picture.

This result (it is valid for half-integer quantization of angular momentum as
well) may seem strange. It should be interpreted in the spirit of the uncertainty
relation. If a state where the vector £ is precisely aligned in a certain direction ex-
ists, one could choose this direction as the quantization axis and the measurement
would provide the projection onto this direction equal to the maximum possible
value coinciding with V€2, In reality, such a state does not exist. Here, we have
a new pair of complementary variables, ¢, and the azimuthal angle ¢. In classi-
cal mechanics, they are canonically conjugate, analogously to the linear momen-
tum p, and coordinate x. In quantum mechanics, we have the similarity between
the linear momentum operator (4.29) and angular momentum operator ((4.34)
and (4.68)). They both are presented as derivatives with respect to coordinates, lin-
ear and angular, respectively, and, in a deeper approach, they are generators of
translations and rotations. Therefore, we expect that an uncertainty relation holds
similar to A(A€.) - A¢ ~ h. If so, the state with the angular momentum vector
fully aligned along the quantization axis would be an analog to the plane wave
state with precisely defined momentum p. In this state, the azimuthal angle would
be uncertain. However, two interrelated circumstances make this surmise incor-
rect.

Firstly, the components ¢, and ¢, in this limiting case would also be fully deter-
mined (equal to zero), which would contradict the uncertainty principle for these
components since the polar angle has a certain value 6 = 0 as well. Secondly, the
uncertainty Ag cannot be infinite as required by a form of the uncertainty relation
suggested above. Indeed, the angle is a compact coordinate defined only on the in-
terval of 27 and it makes no sense to speak about its infinite uncertainty. Moreover,
any single-valued function of ¢ has to be periodic with period of 2, as we have al-
ready encountered in building the complete set of azimuthal functions (4.72). For
all such functions, the uncertainty of the angle is surely finite (equal to 77/+/3 inde-
pendently of the choice of interval of length 2:7).

The difference in geometry or topology between the linear momentum with the
infinite range of the Cartesian coordinate and the angular momentum with a com-
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pact domain of the conjugate angle is crucial. Formally, this is also seen in the fact
that the operators py of components of the linear momentum commute, (4.57),
while the components of the angular momentum /Zk do not, (4.37). The result
of two consecutive translations along arbitrary directions does not depend on the
order of the operations. Contrary to that, the result of two rotations around dif:
ferent axis does depend on their order; the rotation group in three-dimensional
space is non-Abelian. The numerous consequences of this will appear later in the
course.

Since the complete alignment of the vector £ is impossible and its “length” is
always greater than its maximum projection, the closest classical analog of the situ-
ation is the picture of precession of the angular momentum vector around the quan-
tization axis, Figure 5.13. The angle of the precession cone is fixed along with the
projection £.. The transverse components are averaged to zero, ({,) = ({,) = 0,
but their mean square fluctuations never vanish,

(2)=(e2) = ey~ = Yo+ y-my > 0. (5.91)
x y 2 z 2 :
Here, we jumped ahead by identifying the average over possible orientations dis-
cussed earlier with the quantum-mechanical expectation value. Later, we will con-
sider the angular momentum algebra in more detail and strictly derive the proper-
ties loosely discussed here.

If one makes a formal limiting transition # — 0, the uncertainty relations cease
to put any restrictions on the observables. The wave packet spreading (5.26) stops
and all physical quantities can have certain values simultaneously. As mentioned,
the Planck constant merely provides a numerical scale for manifestation of quan-
tum laws based on symmetry. If this scale is much smaller than what is accessible
to physical measurements, the uncertainties become insignificant. For the angular
momentum, this limit is reached in the following way: one needs to go to large
(macroscopic) quantum numbers, { — oo when (({ + 1) a €2 = (£?).x, and the
classical alignment is restored. Then, we set # — 0 in such a way that #{, the phys-
ical magnitude of angular momentum, is finite. The spin angular momentum of a
particle does not have a macroscopic limit, and the spin vector #s with magnitude
h/2 and

s=s5(5+1)= z (5.92)

vanishes in the classical limit. However, it survives, for example, in ferromagnetic
alignment of a macroscopically large number of spins.

To conclude this lengthy chapter, we emphasize that quantum theory is based on
the existence of complementary physical quantities and complementary classes of
experiments. This complementarity, in turn, reflects specific symmetry properties
of observables. The complementary experiments can be thought of as different pro-
jections of the same state of a microscopic object onto different physical situations.
In some sense, this is analogous to different reference frames in relativity theory
and, instead of the Lorentz transformations, there are certain rules of transforma-
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tion of quantum amplitudes between various types of measurements. However,
the interpretation of the results is probabilistic so that the full wave function can
be explored only in a series of experiments under identical conditions. The uncer-
tainty relations are numerical expressions for the complementarity principle, that
is, interplay of fundamental symmetries on a quantum level.
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