Appendix C

Scalar functions

C.1 Definition

We define the one-point, two-point, three-point and four-point functions as {69, 105]
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The integration formula of the scalar functions Ag, By, By, Cy and Dg are given
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as follows:

Ag(m) = m? [A —In f—; + 1} : (C.6)
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where

1
A=—-—~vyp+Indm,
€

a=—p3, b=—p3, c=—2p1-pa, d=—m3 +m3 + p3, (C.9)

2 2 2 2
e=—mj+mj+p]+2p1-p2, f=—-m3,

and the four-point scalar function is given by

Dy(p1,p2, p3, m1, ma, m3, my)
1

1 T Y
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where

a=p3, b=p3, g=7pi,

c=2py-p3, h=2p1-p3, J=2p1-p2,

d=m3 —mi—p3, e=m3—m3—2ps-p3— p3,
k=mi—m3—2p1-p2—2p1-p3—pi. f=mj.

C.2 Tensor reduction

Lorentz covariance of the integrals allows to decompose the tensor integrals into ten-

sors constructed from the external momenta and the metric tensor g,,, with the scalar
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coefficients. The explicit Lorentz decompositions for the vector and tensor integrals

By, C, and Cyy are given below. We are not going to show the four-point function

because our calculation does not involve the box diagrams, but they can be found in

Ref. [106].

For the two-point functions we have the relations
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Bumama) = oo [Aolmn) = Ao(ma) — (& + mf = m3) Bo(t,ma,m)] (C11)
By (0, my,ma) by Bo1 + guuvBa2, (C.12)
Ba1 (€, m1,ms) % Ag(mg) —miBy = 2(6* + mf —m3) By — M + %] :
(C.13)
1 (2

Boa (¢, mq, m3) A [Ao(mg) +2m2 By + (2 +m2 —m3)By +m? +m3 — 3} ,
(C.14)
Bﬂ(ﬁ, mi, mo) @Bl (¢, m1,m3), (C.15)
Bi(t,my,mg) = —Ao(ma) +miBy (¢, my, my), (C.16)
By(£, mymy) Ag(mg) + mt Bo(¢,m1,my). (C.17)

For the three-point functions we have the relations
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C.3 UV-divergent parts of tensor integrals

For practical calculations it is useful to know the UV-divergent parts of the tensor
integrals explicitly. We give directly the pole structures of the divergent one-loop

tensor coefficient integrals up to terms of the order O(e)

2
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1
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C.4 Scalar two-point function

For the two-point function By, we notice that the Feynman parameter integration
itself cannot result in a pole, cf. Eq. C.7, therefore we can use a series expansion in
€ to simplify the integration. The relevant B( functions used in this calculation are

listed below.

By(0,0,0) = 0,

By(3,0,m?) =

Boy(m?,0,0) =

By(0,m?,0) =

Bo(m%,m%,O) =

{

By(5,0,0) = {%+2—lni2+i7r},
{
{

. iCe [1
iCe 1

175



where

AN
Ce = (W—’;> T(1+ ),
t

s = s—mi,
4m?2
6 - 1— In:La
S

1-p

§ = —.

1+ 5

The Bj function can be easily derived from B function through the following relation,

(mg —m1) (Bo(x, m1,ma) — Bo(0,m1,mg))

1
Bi(z,my, mg) = - §Bo($,m1,m2)-

2x
(C.42)
Then, we obtain
B1(0,0,0) = 0, (C.43)
iC, 1 3
Bl(m%,mg,()) = 16—7:2{_2_6_5}’ (C.44)
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C.5 Scalar three-point function

C.5.1 Analytical result of Cy(p?,p3,0,0,0)

When the loop momentum in the scalar function goes to infinity, the ultra-violet
divergence will appear and can be factorized from the rest finite components. Beside
of the UV divergence, the infrared divergence may also arise in the case of the massless

internal particles when the loop momentum goes to zero.
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Figure C.1: The three-point green function with massless internal particles.

The exchange of gluon between the initial state massless quarks leads to the

following divergent three-point integral:

2 9 _ A2 d™¢ 1
Co(p1,p3,0,0,0) = Cg* = p /(27r)"€2(£+p1)2(£+p1+p2)2' (C.47)

The integral looks impossible, and in fact it will not be easy. The evaluation of such
integrals requires another piece of computational technology, known as the method
of Feynman parameters *After the Feynman parameterization, we get

n
O—,u/dz/dy/dg ! (C.48)
2, .

37
€ + (p1 + 2p2)y]” + szy(l — y)}

*Here is the MATHEMATICA code for Feynman parameterization:

1 [Tz T(my+---4mp)
= [ doy--dz, ; i .
ATTATE AT / nedend (Y1) S A S D) T (my)

The function FeynmanParameterization is defined as following;:

FeynmanParameterization[p : {{ , }..},x_List]/; Length[x] === Length[p] :=
Module]
{d,a},{d,a} = Transpose[p];

Gamma[Plus QQ a]
Times @QQ Gammala]

(DiracDelta[l — Plus @@ x] Times @@ x*~1) /(Plus @@ (d x))Fs©@@ )

Usage:
FeynmanParameterization[{{ A1, m1}, - -, {An, mn . {z1, -, 20}
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where § = (p1 4 p2)2. Making the substitution,

(= k— (p1 + zpa)y,

the scalar function becomes
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where we have chosen n = 4 — 2e.

Using the properties of I'-functions in F and the following relations

2
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we get the three-point scalar function with massless internal particles as

€
i (Amp?\ T(4+e |1 1. 5 1. o 5 o2
ot = S ——-InS5 4+ -In* | 5 | - = . (C.52
0 167r2<m%) S €2 enm%+2n m% 3 ( )

Here the double poles shows up as one expects due to the soft and collinear singular-

ities.
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Figure C.2: The three-point green function with one massive internal particle.
C.5.2 Analytical result of C) ((p1 + p2)?, (—=p2)*, 0, m7, 0)

The exchange of gluon between the final state top quark and bottom quarks leads to
the following divergent three-point integral (cf. Fig. C.2):
ane 1

2m)" 20+ p1)2 ((€ — p2)? —m3)
(C.53)
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After the Feynman parameterization we obtain

CB = 1% /1 dx/1 dy (2y)/ a7t ! (C.54)
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where p = [zp1 — (1 — x)p2] y. After substitution ¢ — k — p, we have
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In the limit € — 0,

1+ 2¢2Li (%)] , (C.56)
my
therefore,
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The logarithm is commonly defined with a branch cut along the negative real axis,

therefore

A A .9 A
S s +1em S .

Applying Eq. C.58 into C8, we obtain

B i 1|1 1 $ (8 1. 5[ % 72
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Note that we only keep the real parts in the calculation and discard the imaginary

parts since it will contribute at the next-leading order.
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