How does a Full Event Generator Work?

C.-P. Yuan Michigan State University

July 18, 2007 @ AS

Slides prepared by Steve Mrenna @ 2001 CTEQ Summer School

Outline

Goal: Learn how a full event generator, such as PYTHIA, approximates pQCD contribution in predicting event rates and distributions. What's its strength and weakness as compared to a fixed (higher) order pQCD calculation?

Reference: CTEQ School Lectures http://www.phys.psu.edu/~cteq/

Event Generators: Introduction

Theorists calculate S-matrix elements

- Valid to a fixed order in perturbation theory
- In- and Out-states are plane waves of partons
 - 2 partons in / few partons out
 - quark & gluon states are colored / quarks have fractional charge
- Some predictions are ill-behaved
 - Inclusive predictions blur n and n+1 parton states
- Experimentalists measure Objects in detector
 - No distinction between Perturbative and Non-Perturbative
 - In- and Out-states are particles
 - "beam" on "target" / many particles out plus remainder of beam
 - particles are color neutral, integer charged
 - Observable quantities are finite
 - some of the event is "lost", e.g. down the beam pipe

1

Event Generators Bridge this Gap

- Describe the complicated Experimental Observable in terms of a chain of simpler, sequential processes
 - Some components are perturbative
 - hard scattering, parton showering, some decays, …
 - Others are non-perturbative and require modelling
 - hadronization, underlying event, k_T smearing, ...
 - models are not just arbitrary parametrizations, but have semi-classical, physical pictures
 - Sometimes as important as the perturbative pieces
 - The Chain contains complicated integrals over probability distributions
 - Positive Definite
 - Rely heavily on Monte Carlo techniques to choose a history
 - Final Output is E,p,x,t of stable and quasi-stable particles
 - Ready to Interface with Detector Simulations

Experimental Workhorses

- Relied upon by experiments
 - Correct for acceptance after cuts
 - Jet Energy corrections (out of cone)
 - Calorimeter response (e/h)
 - e/γ isolation
 - Behavior of Backgrounds after tight kinematic cuts
 - •••
 - Planning of future facilities
- Often treated as
 - Goal of these lectures: Open Up the Box

Deconstruction of an Event

- Two beam particles from bunches have a central collision
 - Partonic structure (flavor, energy) set by distribution functions
 - Possibly several collisions per crossing
- One parton from each beam may branch, e.g. $q \rightarrow qg$
 - Builds up initial-state shower
 - Includes irresolvable branchings
- Two incoming partons interact
 - Hard scattering 2→1,2,...
 - Process determines character of event (energy scale, color flow,...)
- Hard scattering may produce short-lived resonances
 - color neutral W/Z/H, heavy quarks, etc. decay promptly to partons
- Outgoing partons branch
 - Builds up final-state shower

Deconstruction (cont.)

- Other partons from same beam particles may undergo semi-hard interactions
 - models for "underlying event"
- Beam remnants propagate into final state
 - spin, color, and flavor structure
- Quarks and gluons fragment to color neutral hadrons
 - Normally breaks down into a set of separate colorsinglets
 - Color rearrangement or Bose-Einstein effects may complicate the picture
- Many of the produced hadrons are unstable and decay further
 - displaced vertices/impact parameters are generated

Hard Scattering

Characterizes the rest of the event

- Sets high energy scale
- Fixes quantum # flow

 $2 \rightarrow 2$ Scattering

 $p_{1} = E_{beam}(x_{1},0,0,x_{1}) \qquad p_{2} = E_{beam}(x_{2},0,0,-x_{2})$ $\hat{s} = x_{1}x_{2}4E_{beam}^{2}, \quad \tau = x_{1}x_{2}, y = \frac{1}{2}\ln\frac{x_{1}}{x_{2}}$ $\hat{t} = -\frac{1}{2}\left\{\hat{s} - m_{3}^{2} - m_{4}^{2} - \hat{s}\beta_{34}\cos\hat{\theta}\right\}$ $\hat{s} + \hat{t} + \hat{u} = m_{3}^{2} + m_{4}^{2}$ $\sigma = \iiint \frac{d\tau}{\tau} dyd\hat{t} x_{1}f(x_{1},Q^{2})x_{2}f(x_{2},Q^{2})\frac{d\hat{\sigma}}{d\hat{t}}$ $Q^{2} = K \hat{s}, K \sim 1 \text{ or similar}$

7

Hard Scattering: Resonance Production

$$\sigma = \iint \frac{d\tau}{\tau} dy \, x_1 f(x_1, Q^2) x_2 f(x_2, Q^2) \, \sigma(\hat{s})$$

Narrow Width Approximation:
$$\delta(\hat{s} - M^2) \rightarrow \frac{M\Gamma}{\pi} \frac{1}{(\hat{s} - M^2)^2 + (\Gamma M)^2}$$

- Hadron Colliders
 - f(x)~1/x for small x, so low-mass tail enhanced & highmass tail depleted
- e⁺e⁻ Colliders
 - f(x)~δ(1-x), so opposite effect occurs
- Requires careful treatment of Γ energy dependence

 $m\Gamma \rightarrow \hat{s}\Gamma/m$

Other "Hard" Details

- Running couplings
- Resonance production in 2→2 processes

$$\int dm^2 \, \delta(m^2 - m_R^2) \, \Rightarrow \int dm^2 \frac{1}{\pi} \frac{m_R \Gamma_R}{(m^2 - m_R^2)^2 + m_R^2 \Gamma_R^2}$$

QCD Processes

- Divergent: $P_T > P_0$ or $P_T^{-2} \rightarrow (P_T^2 + P_0^2)^{-1}$
- Color Flow to 1/N_c (important later)

$$q_{in}g_{in} \to q_{out}g_{out} \qquad |M|^{2} \propto \frac{\hat{s}^{2} + \hat{u}^{2}}{\hat{t}^{2}} - \frac{4}{9}\left(\frac{\hat{s}}{\hat{u}} + \frac{\hat{u}}{\hat{s}}\right)$$

$$\overbrace{q_{in}g_{in}}^{A} \frac{4}{9}\left(2\frac{\hat{u}^{2}}{\hat{t}^{2}} - \frac{\hat{u}}{\hat{s}}\right) \qquad \overbrace{q_{in}g_{out}}^{B} \frac{4}{9}\left(2\frac{\hat{s}^{2}}{\hat{t}^{2}} - \frac{\hat{s}}{\hat{u}}\right) \qquad \frac{1}{9}\frac{\hat{s}^{2} + \hat{u}^{2}}{\hat{t}^{2}} \Rightarrow \frac{1}{9}\frac{\hat{u}^{2}}{\hat{t}^{2}} + \frac{1}{9}\frac{\hat{s}^{2}}{\hat{t}^{2}} = \frac{1}{9}\frac{\hat{s}^{2}}{\hat{t}^{2}} + \frac{1}{9}\frac{\hat{s}^{2}}{\hat{t}^{2}} = \frac$$

Monte Carlo Event Generators

- Improving the Physics complicates the Numerics
 - Difficult Integrands
 - Many dimensions
- Well-suited to Monte Carlo methods
 - Integrands are positive definite
 - Normalize to be probability distributions
 - Hit-or-Miss
 - Test integrand to find maximum weight W_{MAX} (or just guess)
 - Calculate weight W at some random point
 - If W > r W_{MAX}, then keep it, otherwise pick new W
 - Sample enough points to keep error small
 - Can generate events like they will appear in an experiment
 - N = σ[Xb] L[Xb⁻¹]
- (N)NLO QCD programs are not event generators
 - Not positive definite (Cancellations between N and N+1)₀
 - Superior method for calculating suitable observables

The Rest

- Given a generator for the hard scattering, a full event history can be chosen
 - The rest of the event can be described by positive probability distributions
 - Cancellation between virtual and real effects are absorbed into a resolution parameter << anything observable
 - Beam particles fluctuate into partons with P=1
 - In-partons evolve from some parents with P=1
 - Out-partons evolve into daughters with P=1
 - Final state partons hadronize with P=1
- Ignores Quantum Mechanical interference between different steps
 - Essence of the Factorization Theorem

Parton Showering

The Hard Scattering sets a high scale Q

- λ~1/Q of probe must be small to resolve partons inside hadrons
- Structure f(x,Q²) or fragmentation D(x,Q²) functions, couplings α_I(Q²), etc. are evaluated at Q
 - Asymptotic states have a scale Q₀~1 GeV
- Incoming/Outgoing partons are highly virtual
 - How do incoming partons acquire mass² ~ -Q²
 - INITIAL STATE RADIATION (ISR)
 - How do outgoing partons approach the mass shell
 - FINAL STATE RADIATION (FSR)
- Heuristic indication that "traditional" calculations based on a small number of Feynman diagrams are incomplete
 - EXPERIMENTALLY, additional jet structure is observed and important
- Parton Showering Monte Carlos are an approximation to high-order, perturbative QCD, which is itself an approximation to "true QCD"

Parton Showering: More Motivation

Semi-classical description

Accelerated charges radiate

- Color is a charge, and thus quarks also radiate
- Gluon itself has charge (=q-qb pair to 1/N_c)
- **Field Theory**
 - **Block and Nordsieck (QED)**
 - Must include virtual and real (emission) corrections to obtain IR finite cross section
 - Electron is ALWAYS accompanied by photons

Leading Behavior of Emission

Soft-collinear singularity

- $t \rightarrow 0$ when q/g parallel, g is soft
 - pair is indistinguishable from k = p_q + p_g
 - $k^2 \sim E_g E_q \theta^2_{qg}$
- z distribution given by AP splitting kernel
- Universal Result: Factorization of MASS SINGULARITIES
 - $d\sigma_{N+1} = \sigma_N \alpha_S / 2\pi dt/t dz P(z, \phi) d\phi$
 - P is flavor and spin dependent [\$\phi\$ integrated out]
 - $q \rightarrow q g \Rightarrow C_F (1+z^2)/(1-z)$
 - $q \rightarrow g q \Rightarrow C_F (1+(1-z)^2)/z$
 - $\mathbf{g} \rightarrow \mathbf{g} \mathbf{g} \Rightarrow \mathbf{N}_{c} (1-\mathbf{z}(1-\mathbf{z}))^{2}/(\mathbf{z}(1-\mathbf{z}))$
 - $g \rightarrow q \ qb \Rightarrow T_R (z^2 + (1-z)^2)$ [no soft or collinear enhancement]
 - Ambiguity in choice of z and t
 - z corresponds to choice of n_µ in axial gauge

Sudakov Form Factor

- Shower of resolvable emissions q^{*}(p) → q(zp) + g([1-z]p)
 - RESOLVED if z_c < z < 1 z_c
- Prob. of no resolvable emission for small δt

$$1 - \sum_{b,c} \int_{z_{-}(t)}^{z_{+}(t)} dz \frac{\alpha_{s}(t)}{2\pi} P_{a \to bc}(z) \delta t$$

Sum over all numbers of irresolvable emissions:

$$\mathbf{S}(t) = \exp\left\{-\int_{t_0}^{t} dt' \sum_{\mathbf{b}, \mathbf{c}} \int_{z_-(t')}^{z_+(t')} dz \frac{\alpha_{\mathbf{S}}(t)}{2\pi} \mathbf{P}_{\mathbf{a} \to \mathbf{b}\mathbf{c}}(z)\right\} \Leftrightarrow \Delta(t)$$

 $z_+ \sim 1 - z_C, \quad z_- \sim z_C$

- $Prob(t_{max},t) = S(t_{max})/S(t)$
 - Lends itself to Monte Carlo technique
 - Pick random r and solve for new t
 - Continue down to t_{min}
 - Stop shower & begin hadronization

FSR is evolution of Fragmentation Function

$$D_{a}(x,t) = \underbrace{D_{a}(x,t_{0}) \Delta(t)}_{\text{NO BRANCHINGS}} + \underbrace{\int_{t_{0}}^{t'} \int_{x}^{1} dt' \frac{dz}{z} \frac{\Delta(t)}{\Delta(t')} \frac{\alpha_{abc}(z,t')}{2\pi} \hat{P}_{a \to bc}(z) D_{b}(x/z,t')}_{a \to bc}$$

- Outgoing parton from hard scattering is highlyevolved
 - Off-shell with m²~Q²
 - Evolves to lower scale with Prob=1
 - Sudakov yields an explicit history of resolved emission
 - "NO" branching means NO RESOLVABLE branching
 - Contains some of the virtual pieces ignored in previous NLO example
 - End of PS naturally related to hadronization

Virtuality-Ordered PS

Initial State Radiation

Similar picture, but solving DGLAP for **PDFs BRANCHINGS** NOBRANCHING $f_{a}(x,t') = \overbrace{f_{a}(x,t)}^{t} \Delta(t') + \int_{t}^{t} \int_{x}^{1} dt'' \frac{dz}{z} \frac{\Delta(t')}{\Delta(t'')} \frac{\alpha_{abc}(z,t'')}{2\pi} \widehat{P}_{a \rightarrow bc}(z) f_{b}(x/z,t'')$ Increasing parton virtuality Q_{0}^{2} \boldsymbol{x} Parent has more momentum

Forward Showering

Showering generated by a sequence of solutions to:

r=
$$\Delta(t_{new})/\Delta(t_{old}) \in [0,1]$$

■ $t_{start} \sim \ln Q_0^2$ $t_{final} \sim \ln Q^2$

- Each increase in t (more negative mass) requires a new branching
- This is Forward Showering
- Problems:
 - Which branch a→bc evolves further?
 - Must find x1 x2 S = Q²
 - Reject too many configurations

Backwards Showering

Sjostrand

-
$$\ln(S) = \int_{t}^{t_{MAX}} dt' \int_{z_{-}}^{z_{+}} dz \ \frac{\alpha_{abc}(z, t')}{2\pi} \hat{P}_{a \rightarrow bc}(z) \ \frac{x' f_{a}(x', t')}{x f_{b}(x, t')}; x' = x/z$$
$$\frac{\Delta(t)}{f_{b}(x, t)} \frac{f_{a}(x, t')}{\Delta(t')}; \operatorname{Prob}(z) \propto \frac{\alpha_{abc}(z, t)}{2\pi} \frac{\hat{P}_{a \rightarrow bc}(z)}{2\pi} f_{a}(x', t')$$
$$Marchesini/Webber$$

•
$$-Q_0^2 > -Q_1^2 > ... > -Q_n^2$$

- showering added after hard scatter with unit probability
 - Something happens, -Q²_C
 even if not resolvable

Return to Diagrammatic Approach

- Compare first branch of PS to exact NLO ME
- PS does not include mass for off-shell line
 - Would seem to generate too hard of an emission
- Maximum PS virtuality ~
 M_w
 - Won't generate P_T^W>M_W
- Fixing PS to get the correct hard limit is a field of active research
- Fixing ME to account for soft gluon emission is called Resummation

Basics of Resummation

Consider W production

At LO in pQCD, the rapidity Y and transverse momentum Q_T of W are fixed by the incoming partons.

$$\frac{d\hat{\sigma}}{dQ_{\rm T}^2} \propto \delta \left(\vec{Q}_{\rm T} \right) \sigma_0$$

At NLO, single gluon emission occurs with $Q_T > 0$

$$\frac{d\hat{\sigma}}{dQ_{\rm T}^2} \approx \frac{\alpha_{\rm S}}{Q_{\rm T}^2} \ln\left(\frac{Q^2}{Q_{\rm T}^2}\right) \left[c_1 + c_2 \alpha_{\rm S} \ln^2\left(\frac{Q^2}{Q_{\rm T}^2}\right) + \dots\right]$$

Cross sections at large Q_T or Q_T averaged are described well by fixed order in α_S

However, some observables are sensitive to region Q_T << Q

- For W/Z production, this is most of the data!
- Solution: Reorganize perturbative expansion
 - $\alpha^{N} \ln^{M}(\mathbf{Q}^{2}/\mathbf{Q}_{T}^{2})$
 - Sums up infinite series of soft gluon emissions

Q_T-space Formalism

 Extension of b-space formalism

$$\frac{d\sigma}{dQ^2 dQ_T^2 dy} (h_1 h_2 \rightarrow W + X) =$$

$$\frac{d}{dQ_T^2} \tilde{W}(Q_T, Q, x_1, x_2) + \dots$$

$$\tilde{W} = (C \otimes f)(C \otimes f) \exp(-T) H(Q)$$

$$T(Q_T, Q) = \int_{Q_T^2}^{Q^2} \frac{dm}{m} \left[A \ln\left(\frac{Q^2}{m}\right) + B \right]$$

$$(C \otimes f)[x] = \int_{x}^{1} \frac{dz}{z} C(x/z)f(z)$$

- Looks very similar to MW
 PS algorithm for
 backwards shower
 - Sudakov determines P_T^W
- Soft gluon emissions are integrated out
 - Sudakov contains soft pieces not in DGLAP
- Total rate can be calculated to any given order in α_s

At LO,
$$\frac{d\sigma}{dQ_{T}^{2}} = \sigma_{0} \frac{d}{dQ_{T}^{2}} \left\{ \frac{\exp\left[-\frac{1}{2}T(Q_{0},Q)\right] f(x,Q_{T})}{\exp\left[-\frac{1}{2}T(Q_{0},Q_{T})\right] f(x,Q)} \right\}$$

Key Features

Analytic Resummation

- soft gluon emissions exponeniate into Sudakov form factor
- k_T conserved
- Total rate at (N)NLO
 - modified PDF's
- corrections for hard emission
- soft gluons are integrated out
 - Predicts observables for a theoretical W
- Needs modelling of nonperturbative physics

- Parton Showering
 - DGLAP evolution generates a shower of partons
 - LL with some sub-LL
 - Exact soft gluon kinematics
 - LO event rates
 - underestimates single, hard emissions
 - Explicit history of PS
 - More closely related to object identified with a W
 - natural transition to hadronization models
 - Follow color flow down to small scales

Similar physics, but different approach with different regimes of applicability

Comparison of Predictions

- Can compare for inclusive enough observables
- Demonstrates ability of analytic approach to describe the full spectrum
- Does not indicate variability of analytic prediction
 - Or (in)sensitivity to experimental cuts

Color Coherence

- In previous discussion of PS, interference effects were ignored, but they can be relevant
 - axial gauge eliminates only collinear interference
- Add a soft gluon to a shower of N almost collinear gluons
 - incoherent emission: couple to all gluons
 - $|\mathbf{M}(\mathbf{N+1})|^2 \sim \mathbf{N} \times \alpha_{\mathbf{S}} \times \mathbf{N}_{\mathbf{C}}$
 - coherent emission: soft means long wavelength
 - resolves only overall color charge (that of initial gluon)
 - $|\mathbf{M}(\mathbf{N+1})|^2 \sim \mathbf{1} \times \alpha_{\mathbf{S}} \times \mathbf{N}_{\mathbf{C}}$

Angular-Ordered PS

- Showers should be Angular-Ordered
 - $\zeta = p_{I} \cdot p_{J} / E_{I} E_{J} = (1 \cos \theta_{IJ}) \sim \theta_{IJ}^{2}/2$
 - $\zeta_1 > \zeta_2 > \zeta_3 \dots$
- Running coupling depends on $k_T^2 \Rightarrow z(1-z)Q^2$

Color Coherence in Practice

Emission is restricted inside cones defined by the color flow

Essential to Describe Data

3 Jet Distributions in Hadronic Collisions

Parton Showering and Heavy Quarks

Heavy Quarks look like light quarks at large angles but sterile at small angles

Eikonal expression for soft gluon emission: $\frac{d\sigma(q\overline{q}g)}{d\sigma(q\overline{q})} \propto -\left(\frac{p_1}{p_1 \bullet p_3} - \frac{p_2}{p_2 \bullet p_3}\right)^2 \frac{d^3 p_3}{E_3}$ $\Rightarrow \frac{d\sigma(x_3, \theta_{13}, r = .5m_Q/E_Q)}{d\sigma(x_3, \theta_{13}, 0)} = \left(\frac{\theta_{13}^2}{\theta_{13}^2 + 4r^2}\right)^2$ θ_0

- implemented as energy-dependent cutoff in θordering
 - $\theta > \theta_0 = m_Q / E_Q$
 - Creates 'dead cone'
- Can be treated using Q²=Q²_{old}-M²_{on-shell}

θ

Color Dipole Model

- Conventional parton showers
 - start from collinear limit
 - modify to incorporate soft gluon coherence
- Color Dipole Model
 - start from soft limit
 - Emission of soft gluons from color-anticolor dipole is universal:
 - $d\sigma \sim \sigma_0 \frac{1}{2} C_A \alpha_s(K_T^2) dK_T^2/K_T^2 dY/2\pi$
- After emitting a gluon, color dipole is split:

Origami Diagram

- Subsequent dipoles continue to cascade
 - PS: 1 parton to 2 partons
 - CDM: one dipole (2partons) to 2 dipoles (3 partons)
- Similar to θ-ordered PS for e⁺ e⁻ annihilation

- Not suitable for ISR
- Generates more radiation at small-x

The Programs (Pyt/Isa/Wig/Aria)

- ISAJET
 - Q² ordering with no coherence
 - Iarge range of hard processes
- PYTHIA
 - Q² ordering with veto of non-ordered emissions
 - Iarge range of hard processes

HERWIG

- complete color coherence & NLO evolution for large x
- smaller range of hard processes

ARIADNE

- complete color dipole model (best fit to HERA data)
- Interfaced to PYTHIA/LEPTO for hard processes

Summary

- Accelerated color charges radiate gluons
 - Gluons are also charged
 - Showers of partons develop
 - IMPORTANT effect for experiments
- Showering is a Markov process and is added to the hard scattering with P=1
 - Derived from factorization theorems of full gauge theory
 - Performed to LL and some sub-LL accuracy with exact kinematics
 - Color coherence leads to angular ordering
- Modern PS models are very sophisticated implementations of perturbative QCD
 - Still need hadronization models to connect with data

Hadronization

- Colored partons are not physical particles
 - Color must be neutralized
- Lattice QCD has not yet solved this difficult problem
 - It is not even clear that the QCD Lagrangian is THE fundamental one to describe this process
- Need a model of parton confinement into hadrons
 - Some Pure fits
 - Some Semi-classical models
 - Intimately tied to parton shower
 - Lots of low energy data

Confinement

- Non-Abelian nature of QCD bundles up the field lines
 - "flux tube" formation
- Linear potential
 - evidenced by quarkonia spectra and lattice QCD
 - Reggie trajectories J∞M²

String tension $\kappa \sim 1$

Estimate of Hadronization Effects

- TUBE model: Jet stretches in (Rapidity,K_T)-space
- 0<y<Y , μ=Transverse Mass (profile in K_T)
- Jet energy and momentum:

 $E_{JET} = \mu \int_{0}^{r} dy \cosh[y] = \mu \sinh[Y] = Q/2$ $P_{JET} = \mu \int_{0}^{Y} dy \sinh[y] = \mu (\cosh Y - 1)$ $M_{JET}^{2} = 2 P_{JET} \mu \approx Q \mu$ $Thrust T = \frac{P_{JET}}{E_{JET}} \approx 1 - \frac{2\mu}{Q}$ $\langle 1 - T \rangle_{pert} = .055 \quad \langle 1 - T \rangle_{expt} = .068 \implies \mu \sim 500 \text{ MeV}$ **• Quite Relevant!**

Non-pert effects ~ 10-20%

Independent Fragmentation Model

- Longitudinal momentum dependence of hadron distributions in jets approximately scale
- P_T of hadrons inside of jet is limited
- Qualitative features parametrized in Feynman-Field model
 - Does not explain or derive anything
 - Conceptual problems understood by authors
- FF Model
 - Longitudinal hadron momentum a function of 0<Z<1</p>
 - Transverse momentum fit to a Gaussian
 - Recursively apply $Q_A \rightarrow M(Q_A Qb_B) + Q_B$
 - Last remaining soft Q must be linked with other soft partons

Picture of Feynman-Field

FF QUARK JET CHAIN

- Energy sharing described by a simple function f(z)
 - Normalized to 1
- Fragmentation function
 D(z) yields distribution of hadrons with fraction z
 - What is z?
 - 0 < z < 1
 - E(hadron)/E(parent)
 - P₊=E-P_L
 - P_L
 - In practice, it doesn't matter much

Evolution Equation

$$D(z) = f(z) + \int_{0}^{1-z} \frac{dz'}{z'} f(z') D\left(\frac{z}{1-z'}\right)$$

 $f(z) = \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} z^{a-1} (1-z)^{b-1}$ "right" endpoint behavior

Mellin Transform!

$$\tilde{D}(s) = \int_{0}^{1} \frac{dz}{z} z^{s} D(z) = \frac{\Gamma(a+s)\Gamma(a+b)}{\Gamma(a)\Gamma(a+b+s)} + \\ \tilde{D}(s) \frac{\Gamma(a+s)\Gamma(s+b)}{\Gamma(b)\Gamma(a+b+s)} \\ a = 1 \implies \tilde{D}(s) = b \operatorname{Beta}(b,s) \\ \frac{1}{2\pi i} \int ds \ x^{-s} \operatorname{Beta}(b,s) = (1-x)^{b-1} \\ D(z) = b \ z^{-1}(1-z)^{b-1} \\ \langle D(z) \rangle = \ln\left(\frac{1}{z_{cut}}\right) \implies \text{logarithmic multiplicity}$$

Extensions

- Original $f(z) = 1 a_F + 3 a_F (1-z)^2$
- Gluons included by first splitting: dP/dz~z²+(1-z)²
- Heavy Quarks
 - Old-fashioned (time-order) perturbation theory
 - Q→ (Qqb)[z] + q[1-z]

$$\begin{split} \Delta E &= E_{OUT} - E_{IN} \\ &= \sqrt{(zP)^2 + m_a^2} + \sqrt{([1-z]P)^2 + m_b^2} - \sqrt{P^2 + M^2} \\ &\approx zP \bigg(1 + \frac{m_a^2}{2z^2P^2} \bigg) + [1-z]P \bigg(1 + \frac{m_b^2}{2[1-z]^2P^2} \bigg) - P \bigg(1 + \frac{M^2}{2P^2} \bigg) \\ D(z) &\sim \frac{1}{(\Delta E)^2} = \bigg[1 - \frac{1}{z} - \frac{\varepsilon}{1-z} \bigg]^{-2} \end{split}$$

Problems with FF

- Energy is not conserved
 - Can conserve E+p but not E or p separately
- Frame dependent
 - Different multiplicity for collider vs fixed-target mode
- Naively, flavor and charge not conserved
- Space-time picture is wrong
 - Fast hadrons created early in the chain
 - Hadrons should result from color screening
- Not stable to soft or collinear gluon radiation
- Nonetheless, A Decent Parametrization

String Model of Confinement

- Color singlet Q-Qb pair with mass W bound by string with from the str
 - dp/dt = ± κ
 - p₀=W/2
 - p_Q(t) = p₀ κ t
 - $p_{Qb}(t) = -(p_0 \kappa t)$
 - E_{STRING} = 2 κ t

- Q & Qb stop and reverse at t=p₀/ κ
- Obeys area law: W² = 2κ² A
 - (a) Yo-yo mode
 - (b) Q-Qb with net momentum

The Lund String Model

- Allow for the string to break
- q-qb pairs created in field via quantum mechanical tunneling
- d(Prob)/dx dt= exp($-\pi m_T^2/\kappa$), $m_T^2 = m_{\pi}^2 + p_T^2$
- Expanding string breaks into hadrons long

Simple Algorithm

$$\Delta x^{+} = (x_{i-1}^{+} - x_{i}^{+}) = z_{i} x_{i-1}^{+}$$

$$0 < z_{i} < 1 \text{ chosen with prob. } f(z)$$

$$\Delta x^{-} \Delta x^{+} \equiv -\frac{m_{i}^{2}}{\kappa^{2}}$$

$$= 2E_{0}/\kappa; \quad x_{0}^{-} = 0 = x_{n+1}^{+}; \quad x_{n+1}^{-} = 2\overline{E}_{0}$$

45

Similar f(z), different picture

Lund Symmetric Fragmentation Function

- String picture constrains fragmentation function:
 - Lorentz covariance
 - Ieft-right symmetry
 - Shouldn't matter which end of the string fragments first
- f (z) ~ z^{a-b-1} (1-z)^b
 - a,b adjustable parameters for quarks a,b
 - Also quark masses are adjustable
- Baryon production from tunneling diquarks
 - More parameters
- SUMMARY of String Idea
 - Hadrons do not form independently from isolated quarks
 - Hadron production is a cooperative phenomenon
 - INVOLVES Q, Qb, and CONFINING FIELD

Add a Soft Gluon to String

HADRONIZATION OF "BENT STRINGS"

- Gluon imparts momentum to the string
- Evolves as before
- Kink always in the middle of a bit of string
 - NOTE that since gluons are generated via the PS mechanism, the hadronization process is NOT independent of how gluons are generated
 - Coherence
 - Cutoff scale

Three Jet Events

Color Screening

Color Confinement is an experimental fact

- In FF, confinement plays no role
- In the String Model, confinement replaces q-qb pairs with strings [it is everything]
- Screening of color charge can arise through the emission of soft gluons
 - This may be perturbative or non-perturbative
 - Most likely, a mixture of both

QCD-cluster models push the perturbative limit

- Initial state is evolved into an ensemble of low-mass color singlets (screening occurs here)
- Final state hadrons are formed from clusters using a simple parametrization or statistical model

Preconfinement

- Planar approximation
 - gluon = color-anticolor pair

Follow color structure of parton shower

 color-singlet pairs end up close in phase space

The Naive Cluster Model

- Project color singlets onto continuum of high-mass mesonic resonances (=clusters).
 - Decay to lighter well-known resonances and stable hadrons

$$P(C_{j}[w] \rightarrow H_{1} + H_{2}) = P_{F} \cdot P_{S} \cdot P_{K}$$

$$P_{S} = (2J_{1} + 1)(2J_{2} + 1)$$

$$P_{F} = Flavor \text{ dependent}$$

$$P_{K} = \theta(W-M_{1} - M_{2}) \frac{\lambda^{\frac{1}{2}}(w^{2}, M_{1}^{2}, M_{2}^{2})}{W}$$

Can also allow for subcluster formation: C \rightarrow H + C'

$$\rho(\mathsf{M}) = \mathsf{A} \ \theta(\mathsf{M} - \mathsf{M}_0) \ (\mathsf{M} - \mathsf{M}_0)^{\mathsf{N}}$$
⁵¹

More Refined Cluster Model

- Three Regions of Cluster Mass
- C cannot decay to 2 hadrons
 - ENERGY SHIFTED LOCALLY
- C can decay to 2 hadrons and is below FISSION threshold
 - ISOTROPIC decay into pairs of hadrons
- Heavier C undergo FISSION to small, nonfissionable clusters
 - NOT UNLIKE STRING FRAGMENTATION
 - Fission threshold becomes crucial parameter
 - 15% of primary clusters get split
 - Generates 50% of hadrons

Comparison

Strings

- PRODUCTION of HADRONS is nonperturbative, collective phenomena
- Careful Modelling of non-perturbative dynamics
- Improving data has meant successively refining perturbative phase of evolution

- Clusters
 - PERTURBATION THEORY can be applied down to low scales if the coherence is treated correctly
 - There must be nonperturbative physics, but it should be very simple
- Improving data has meant successively making non-pert phase more stringlike

STRING model includes some non-perturbative aspect of color coherence

The Programs

ISAJET

 Independent fragmentation & incoherent parton showers

JETSET (now PYTHIA)

- THE implementation of the Lund string model
- Excellent fit to e⁺ e⁻ data

HERWIG

- THE implementation of the cluster model
- OK fit to data, but problems in several areas
 - String effect a consequence of full angular-ordering

Topics Not Covered

- Some aspects of the event are beyond the scope of this introductory set of lectures [and my expertise], yet can be important when comparing to data and can impact new physics searches
 - Treatment of the beam remnant may be relevant for forward jet tagging studies
 - Higgs production through WW fusion
 - Underlying event affects isolation and jet-energy corrections
 - Observing Higgs in photons or jets
 - Interconnection and Bose-Einstein effects are relevant to precision EW measurements
 - Tau leptons and b-hadrons must be decayed correctly to understand polarization effects & tagging efficiency
 - Is phase space enough?
- The objects that experimentalists observe are not the same as the output of an event generator! 56

Selected Topics for Real Users

K-factors and hard-emission corrections

- "When can I (should I) use a K-factor?"
- Event rate is fixed by the hard scattering
 - Almost always the Born Level rate
 - For QCD processes, there may be a large scale dependence
 - $\delta \alpha_{s}^{2} / \alpha_{s}^{2} = 2 \ \delta \alpha_{s} / \alpha_{s} \Rightarrow 20-40\%$ variation possible
 - Hard scale sets the maximum scale for PS
 - Correcting the event rate does not mean correcting the kinematics
- Scale by a K-factor when not applying very tight cuts
 - E.g. Normalizing WZ production rate overestimates low P_T of the W+Z pair, but underestimates high tail
 - THIS IS OKAY IF YOUR CUTS DO NOT BIAS THE P_{T} OF THE PAIR
 - THIS HAS TO BE CHECKED EXPLICITLY

Selected Topics (II)

- Much activity recently in correcting the PS to generate hard emissions
- Basically, 2 approaches (W/Z+jets)
 - Fill out the kinematic regions not accessed by the parton shower
 - FOR PYTHIA, SOME LOW K_T EMISSIONS ARE SHIFTED HIGHER
 - STILL HAVE TO APPLY K-FACTOR, BUT KINEMATICS ARE BETTER
 - MAY BE CORRECT IF SAME K-FACTOR APPLIES TO NNLO CORRECTIONS OF NLO
 - FOR HERWIG, MORE COMPLICATED SINCE SOME NEW RATE IS ADDED IN THROUGH α_s CORRECTIONS
 - AGREEMENT WITH DATA STILL REQUIRES K-FACTOR
 - Add PS to NLO calculation
 - SHOULD NOT BE TRUSTED IN CERTAIN KINEMATIC REGIONS
 - VERY SUBTLE (SHOULDN'T GENERATE PARTON EMISSIONS IN SAME KINEMATIC REGION AS EXPLICIT 58 HARD EMISSIONS)

Selected Topics (III)

- Adding an external process (e.g. in PYTHIA)
 - Big 3 all allow for this option
 - Typically avoid complex phase space integrals which may need special treatment
 - First step is to obtain the necessary Monte Carlo
 - Requirements
 - NUMERICAL STABILITY
 - INFORMATION ABOUT INCOMING PARTONS
 - IF PDFs ARE TREATED INCLUSIVELY, USER MUST CHOOSE FLAVOR
 - INFORMATION ABOUT OUTGOING PARTONS
 - IF A JET MONTE CARLO, USER MUST IDENTIFY GLUONS OR QUARKS
 - COLOR FLOWS
 - PROJECT COLOR DECOMPOSITION INTO LARGE N LIMIT

Selected Topics (IV)

- Numerical stability is most important
 - Need unbiased (soft) parton-level cuts, but this usually means a large cross section
 - MUST SIMULATE ENOUGH EVENTS TO UNDERSTAND RARE BACKGROUNDS
- Can guess at the rest
 - Conservation of flavor
 - Probability to radiate a gluon is C_A/C_F
 - Planar approximation for color flow
 - g →q qb
 - Draw all possible connections through Feynman diagrams
 - Pick one randomly
 - Or bias those with a certain singularity structure

Selected Topics (V)

- Second step is to define the process
 - Either need to know maximum event weight W_{MAX} and allow generator to do unweighting
 - Or set W_{MAX}=1 and only generate unweighted events
 - Or decide that weighted events are okay
 - Set W_{MAX}=1, but pass W through a common block to histogramming routine
 - Pass kinematics and quantum numbers to a common block
 - PYUPEV in PYTHIA
 - Must specifiy color and anti-color flow
 - In-gluon (1) passes its color to out-quark (3)
 - In-gluon (1) passes its anti-color to out-antiquark
 (4)
 - Out-quark (3) gets its color from In-gluon (1)
 - Etc.

Selected Topics (VI)

- Specify showering pairs and scales
 - Even a single out-going QCD parton must have a partner to conserve energy-momentum
 - $qg \rightarrow q\gamma\gamma$ requires some choice of $(q\gamma)$ pairing
 - Should not set scales harder than typical scale of new process
 - If scale is too low, then not enough gluon radiation to screen color charge
 - MOST SUBTLE PART OF WHOLE PROCEDURE

Overall Summary

- Event Generators accumulate our knowledge and intuition about the Standard Model into one package
 - Apply perturbation theory whenever possible
 - hard scattering, parton showering, decays
 - Rely on models or parametrizations when present calculational methods fail
 - hadronization, underlying event, beam remnants
- Out of the box, they give reliable estimates of the full, complicated structure of an event
 - Sophisticated users will find more flexibility & applications
 - And will avoid easy mistakes
 - Understanding the output will lead to a broad understanding of the Standard Model (and physics beyond)